Blood-brain barrier disruption by low-frequency ultrasound

A recent study showed a dramatic increase in cerebral hemorrhage comprising atypical locations with low-frequency ultrasound-mediated recombinant tissue plasminogen activator-thrombolysis in humans. Here, we provide a possible explanation for this phenomenon by a side effect observed in a study usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stroke (1970) 2006-06, Vol.37 (6), p.1546-1548
Hauptverfasser: REINHARD, Matthias, HETZEL, Andreas, KRÜGER, Sebastian, KRETZER, Stefan, TALAZKO, Jochen, ZIYEH, Sargon, WEBER, Johannes, ELS, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A recent study showed a dramatic increase in cerebral hemorrhage comprising atypical locations with low-frequency ultrasound-mediated recombinant tissue plasminogen activator-thrombolysis in humans. Here, we provide a possible explanation for this phenomenon by a side effect observed in a study using the similar ultrasound device. The study was originally undertaken to investigate by transcranial Doppler sonography, positron emission tomography and perfusion MRI whether transcranial application of wide-field low-frequency ultrasound (300 kHz) improves cerebral hemodynamics in patients with cerebral small vessel disease. Showing no clear positive effect on cerebral hemodynamics in 4 patients and on cerebral perfusion (positron emission tomography) in 2 patients, the study has been terminated early because of a remarkable side effect in the first patient (a 62 year-old man) undergoing perfusion-MRI: detection of frontoparietal extravasation of Gadolinium contrast agent (applied during MRI perfusion imaging preinsonation) on MRI immediately postinsonation. Abnormal permeability of the human blood-brain barrier can be induced by wide-field low-frequency insonation. The observed excessive bleeding rate with low-frequency sonothrombolysis might thus be attributable to primary blood-brain barrier disruption by ultrasound.
ISSN:0039-2499
1524-4628
DOI:10.1161/01.STR.0000221813.27519.0b