Sex Difference in the Response of Melanin-Concentrating Hormone Neurons in the Lateral Hypothalamic Area to Glucose, as Revealed by the Expression of Phosphorylated Cyclic Adenosine 3′,5′-Monophosphate Response Element-Binding Protein

Because there are sex differences in feeding behavior in rats, we looked for a possible sex difference in the response to glucose of melanin-concentrating hormone (MCH) neurons in the lateral hypothalamic area using phosphorylated cAMP response element-binding protein (pCREB) as a marker of neural a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Endocrinology (Philadelphia) 2005-08, Vol.146 (8), p.3325-3333
Hauptverfasser: Mogi, Kazutaka, Funabashi, Toshiya, Mitsushima, Dai, Hagiwara, Hiroko, Kimura, Fukuko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Because there are sex differences in feeding behavior in rats, we looked for a possible sex difference in the response to glucose of melanin-concentrating hormone (MCH) neurons in the lateral hypothalamic area using phosphorylated cAMP response element-binding protein (pCREB) as a marker of neural activity. Intact male rats and female rats at diestrus 2, proestrus, or estrus were fed normally or fasted for 48 h and injected with saline or glucose (400 mg/kg). Thereafter, preparations were subjected to immunohistochemical processing for the double staining of MCH and pCREB. Fasting increased the ratio of MCH neurons with pCREB (double-stained cells) in both male and female rats. In fasted rats, glucose injection decreased the ratio of double-stained cells more promptly in females than in males. The magnitude of decrease caused by glucose was greater at proestrus and estrus than at diestrus 2. Gonadectomy in males enhanced and in females attenuated the response of MCH neurons to glucose. Testosterone and estrogen replacement in males and females, respectively, restored the response of MCH neurons to glucose. The demonstrated sex differences in the response of MCH neurons to glucose correlated well with the gonadal steroid milieu; thus, MCH neurons may play an important role in sex differences in feeding behavior.
ISSN:0013-7227
1945-7170
DOI:10.1210/en.2005-0078