“Lens” Effect in Directed Assembly of Nanowires on Gradient Molecular Patterns
We report a new phenomenon, named here as the “lens” effect, in the directed-assembly process of nanowires (NWs) on self-assembled monolayer (SAM) patterns. In this process, the adsorption of NWs is focused in the nanoscale regions at the center of microscale SAM patterns with gradient surface molec...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2006-06, Vol.110 (21), p.10217-10219 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report a new phenomenon, named here as the “lens” effect, in the directed-assembly process of nanowires (NWs) on self-assembled monolayer (SAM) patterns. In this process, the adsorption of NWs is focused in the nanoscale regions at the center of microscale SAM patterns with gradient surface molecular density just like an optical lens focuses light. As a proof of concepts, we successfully demonstrated the massive assembly of V2O5 NWs and single-walled carbon nanotubes (swCNTs) with a nanoscale resolution using only microscale molecular patterning methods. This work provides us with important insights about the directed-assembly process, and from a practical point of view, it allows us to generate nanoscale patterns of NWs over a large area for mass fabrication of NW-based devices. |
---|---|
ISSN: | 1520-6106 1520-5207 |
DOI: | 10.1021/jp062108s |