Quantitative analysis of functional clustering of neurons in the macaque inferior temporal cortex

Neurons with similar preferences for two-dimensional shapes of intermediate complexity cluster in area TE of the monkey inferior temporal cortex. To further characterize the functional structure of area TE, we quantitatively analyzed various aspects of the visual responses of closely located neurons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience research 2005-08, Vol.52 (4), p.311-322
Hauptverfasser: Tamura, Hiroshi, Kaneko, Hidekazu, Fujita, Ichiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neurons with similar preferences for two-dimensional shapes of intermediate complexity cluster in area TE of the monkey inferior temporal cortex. To further characterize the functional structure of area TE, we quantitatively analyzed various aspects of the visual responses of closely located neurons by applying multiple single-unit recording techniques in anesthetized monkeys. Examination of the visual responses elicited with a large, predetermined set of visual stimuli confirmed previous findings that nearby neurons, on average, exhibited positively correlated preferences for a set of visual stimuli. Nearby neurons also tended to be similar in their receptive-field organization and contrast-polarity preference. In contrast, no correlation was found in the size tuning of neighboring neurons. Pooling or subtraction of activities between a pair of nearby neurons was shown to improve stimulus discriminability, if the neuron pair had positively or negatively correlated stimulus preferences, respectively. These results indicate that nearby TE neurons share some aspects of stimulus preference, but their response selectivity differ in other aspects. Both pooling and subtraction between nearby neurons can reduce across-trial response variability, if these decoding strategies are applied to appropriate neuronal pools.
ISSN:0168-0102
1872-8111
DOI:10.1016/j.neures.2005.04.006