Local virial relation for self-gravitating system
We demonstrate that the quasi-equilibrium state in a self-gravitating N-body system after cold collapse is uniquely characterized by the local virial relation using numerical simulations. Conversely, assuming the constant local virial ratio and Jeans equation for a spherically steady-state system, w...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2006-04, Vol.73 (4 Pt 2), p.046112-046112, Article 046112 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 046112 |
---|---|
container_issue | 4 Pt 2 |
container_start_page | 046112 |
container_title | Physical review. E, Statistical, nonlinear, and soft matter physics |
container_volume | 73 |
creator | Iguchi, Osamu Sota, Yasuhide Nakamichi, Akika Morikawa, Masahiro |
description | We demonstrate that the quasi-equilibrium state in a self-gravitating N-body system after cold collapse is uniquely characterized by the local virial relation using numerical simulations. Conversely, assuming the constant local virial ratio and Jeans equation for a spherically steady-state system, we investigate the full solution space of the problem under the constant anisotropy parameter and obtain some relevant solutions. Specifically, the local virial relation always provides a solution which has a power-law density profile in both the asymptotic regions r --> 0 and infinity. This type of solution is commonly observed in many numerical simulations. Only the anisotropic velocity dispersion controls this asymptotic behavior of density profile. |
doi_str_mv | 10.1103/PhysRevE.73.046112 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67986979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67986979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-517ae1f5b97532df5769e99df1bd0fedb8b449e7aab776ee922ca770dfda50a73</originalsourceid><addsrcrecordid>eNpFkEFLw0AUhBdRbK3-AQ-Sk7fUfbvZfdmjlFaFgiJ6XjbJ2xpJmrqbFvrvTWnF0wzDzBw-xm6BTwG4fHj72sd32s2nKKc80wDijI1BKZ4Kifr84KVJJSo1YlcxfnMuhcyzSzYCjQB5LscMll3pmmRXh3qQQI3r626d-C4kkRqfroLb1f0QrldJ3Mee2mt24V0T6eakE_a5mH_MntPl69PL7HGZlpJDnypAR-BVYVBJUXmF2pAxlYei4p6qIi-yzBA6VyBqIiNE6RB55SunuEM5YffH303ofrYUe9vWsaSmcWvqttFqNLk2aIaiOBbL0MUYyNtNqFsX9ha4PYCyf6AsSnsENYzuTu_boqXqf3IiI38B0zFmVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67986979</pqid></control><display><type>article</type><title>Local virial relation for self-gravitating system</title><source>American Physical Society Journals</source><creator>Iguchi, Osamu ; Sota, Yasuhide ; Nakamichi, Akika ; Morikawa, Masahiro</creator><creatorcontrib>Iguchi, Osamu ; Sota, Yasuhide ; Nakamichi, Akika ; Morikawa, Masahiro</creatorcontrib><description>We demonstrate that the quasi-equilibrium state in a self-gravitating N-body system after cold collapse is uniquely characterized by the local virial relation using numerical simulations. Conversely, assuming the constant local virial ratio and Jeans equation for a spherically steady-state system, we investigate the full solution space of the problem under the constant anisotropy parameter and obtain some relevant solutions. Specifically, the local virial relation always provides a solution which has a power-law density profile in both the asymptotic regions r --> 0 and infinity. This type of solution is commonly observed in many numerical simulations. Only the anisotropic velocity dispersion controls this asymptotic behavior of density profile.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.73.046112</identifier><identifier>PMID: 16711883</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2006-04, Vol.73 (4 Pt 2), p.046112-046112, Article 046112</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-517ae1f5b97532df5769e99df1bd0fedb8b449e7aab776ee922ca770dfda50a73</citedby><cites>FETCH-LOGICAL-c301t-517ae1f5b97532df5769e99df1bd0fedb8b449e7aab776ee922ca770dfda50a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2877,2878,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16711883$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iguchi, Osamu</creatorcontrib><creatorcontrib>Sota, Yasuhide</creatorcontrib><creatorcontrib>Nakamichi, Akika</creatorcontrib><creatorcontrib>Morikawa, Masahiro</creatorcontrib><title>Local virial relation for self-gravitating system</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>We demonstrate that the quasi-equilibrium state in a self-gravitating N-body system after cold collapse is uniquely characterized by the local virial relation using numerical simulations. Conversely, assuming the constant local virial ratio and Jeans equation for a spherically steady-state system, we investigate the full solution space of the problem under the constant anisotropy parameter and obtain some relevant solutions. Specifically, the local virial relation always provides a solution which has a power-law density profile in both the asymptotic regions r --> 0 and infinity. This type of solution is commonly observed in many numerical simulations. Only the anisotropic velocity dispersion controls this asymptotic behavior of density profile.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLw0AUhBdRbK3-AQ-Sk7fUfbvZfdmjlFaFgiJ6XjbJ2xpJmrqbFvrvTWnF0wzDzBw-xm6BTwG4fHj72sd32s2nKKc80wDijI1BKZ4Kifr84KVJJSo1YlcxfnMuhcyzSzYCjQB5LscMll3pmmRXh3qQQI3r626d-C4kkRqfroLb1f0QrldJ3Mee2mt24V0T6eakE_a5mH_MntPl69PL7HGZlpJDnypAR-BVYVBJUXmF2pAxlYei4p6qIi-yzBA6VyBqIiNE6RB55SunuEM5YffH303ofrYUe9vWsaSmcWvqttFqNLk2aIaiOBbL0MUYyNtNqFsX9ha4PYCyf6AsSnsENYzuTu_boqXqf3IiI38B0zFmVA</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>Iguchi, Osamu</creator><creator>Sota, Yasuhide</creator><creator>Nakamichi, Akika</creator><creator>Morikawa, Masahiro</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20060401</creationdate><title>Local virial relation for self-gravitating system</title><author>Iguchi, Osamu ; Sota, Yasuhide ; Nakamichi, Akika ; Morikawa, Masahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-517ae1f5b97532df5769e99df1bd0fedb8b449e7aab776ee922ca770dfda50a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iguchi, Osamu</creatorcontrib><creatorcontrib>Sota, Yasuhide</creatorcontrib><creatorcontrib>Nakamichi, Akika</creatorcontrib><creatorcontrib>Morikawa, Masahiro</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iguchi, Osamu</au><au>Sota, Yasuhide</au><au>Nakamichi, Akika</au><au>Morikawa, Masahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local virial relation for self-gravitating system</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2006-04-01</date><risdate>2006</risdate><volume>73</volume><issue>4 Pt 2</issue><spage>046112</spage><epage>046112</epage><pages>046112-046112</pages><artnum>046112</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>We demonstrate that the quasi-equilibrium state in a self-gravitating N-body system after cold collapse is uniquely characterized by the local virial relation using numerical simulations. Conversely, assuming the constant local virial ratio and Jeans equation for a spherically steady-state system, we investigate the full solution space of the problem under the constant anisotropy parameter and obtain some relevant solutions. Specifically, the local virial relation always provides a solution which has a power-law density profile in both the asymptotic regions r --> 0 and infinity. This type of solution is commonly observed in many numerical simulations. Only the anisotropic velocity dispersion controls this asymptotic behavior of density profile.</abstract><cop>United States</cop><pmid>16711883</pmid><doi>10.1103/PhysRevE.73.046112</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-3755 |
ispartof | Physical review. E, Statistical, nonlinear, and soft matter physics, 2006-04, Vol.73 (4 Pt 2), p.046112-046112, Article 046112 |
issn | 1539-3755 1550-2376 |
language | eng |
recordid | cdi_proquest_miscellaneous_67986979 |
source | American Physical Society Journals |
title | Local virial relation for self-gravitating system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T14%3A25%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20virial%20relation%20for%20self-gravitating%20system&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Iguchi,%20Osamu&rft.date=2006-04-01&rft.volume=73&rft.issue=4%20Pt%202&rft.spage=046112&rft.epage=046112&rft.pages=046112-046112&rft.artnum=046112&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.73.046112&rft_dat=%3Cproquest_cross%3E67986979%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67986979&rft_id=info:pmid/16711883&rfr_iscdi=true |