Local virial relation for self-gravitating system
We demonstrate that the quasi-equilibrium state in a self-gravitating N-body system after cold collapse is uniquely characterized by the local virial relation using numerical simulations. Conversely, assuming the constant local virial ratio and Jeans equation for a spherically steady-state system, w...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2006-04, Vol.73 (4 Pt 2), p.046112-046112, Article 046112 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We demonstrate that the quasi-equilibrium state in a self-gravitating N-body system after cold collapse is uniquely characterized by the local virial relation using numerical simulations. Conversely, assuming the constant local virial ratio and Jeans equation for a spherically steady-state system, we investigate the full solution space of the problem under the constant anisotropy parameter and obtain some relevant solutions. Specifically, the local virial relation always provides a solution which has a power-law density profile in both the asymptotic regions r --> 0 and infinity. This type of solution is commonly observed in many numerical simulations. Only the anisotropic velocity dispersion controls this asymptotic behavior of density profile. |
---|---|
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/PhysRevE.73.046112 |