Correction of phase offset errors in main pulmonary artery flow quantification
Purpose To investigate whether an existing method for correction of phase offset errors in phase‐contrast velocity quantification is applicable for assessment of main pulmonary artery flow with an MR scanner equipped with a high‐power gradient system. Materials and Methods The correction method cons...
Gespeichert in:
Veröffentlicht in: | Journal of magnetic resonance imaging 2005-07, Vol.22 (1), p.73-79 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 79 |
---|---|
container_issue | 1 |
container_start_page | 73 |
container_title | Journal of magnetic resonance imaging |
container_volume | 22 |
creator | Lankhaar, Jan-Willem Hofman, Mark B.M. Marcus, J. Tim Zwanenburg, Jaco J.M. Faes, Theo J.C. Vonk-Noordegraaf, Anton |
description | Purpose
To investigate whether an existing method for correction of phase offset errors in phase‐contrast velocity quantification is applicable for assessment of main pulmonary artery flow with an MR scanner equipped with a high‐power gradient system.
Materials and Methods
The correction method consists of fitting a surface through the time average of stationary pixels of velocity‐encoded phase images, and subtracting this surface from the velocity images. Pixels are regarded as stationary if their time standard deviation falls into the lowest percentile. Flow was measured in the main pulmonary artery of 15 subjects. Each measurement was repeated on a stationary phantom. The phase offset error in the phantom was used as a reference. Correction was applied with varying polynomial surface orders (0–5) and stationarity percentiles (5–50%). The optimal surface order and stationarity percentile were determined by comparing the fitted surface with the phantom.
Results
Using a first‐order surface and a (noncritical) 25% percentile, the correction method significantly reduced the phase offset error from 1.1 to 0.35 cm/second (RMS), which is equivalent to a reduction from 11% to 3.3% of mean volume flow. Phase error correction strongly affected stroke volume (range –11 to 26%).
Conclusion
The method significantly reduces phase offset errors in pulmonary artery flow. J. Magn. Reson. Imaging 2005;22:73–79. © 2005 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/jmri.20361 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67985269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19409858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4981-660fd257a0a32b729ac1591e9132a24b7c3d342ffbb0c6fb71bac6afa24279293</originalsourceid><addsrcrecordid>eNqFkE1PAyEQhonR-H3xB5g9eTBZ5WOB5aiN1hqt0dR4JCyFiO4uLexG_fdSW_WmF2YSnnky8wJwgOAJghCfvjTBnWBIGFoD24hinGNasvXUQ0pyVEK-BXZifIEQClHQTbCFqOAIlWgbjAc-BKM759vM22z2rKJJjY2my0wIPsTMtVmj0jPr68a3KnxkKnQmFVv7t2zeq7Zz1mm1cOyBDavqaPZXdRc8Xl5MBlf5zd1wNDi7yXUhSpQzBu0UU66gIrjiWCidVkJGIIIVLiquyZQU2NqqgprZiqNKaaZs-sNcYEF2wdHSOwt-3pvYycZFbepatcb3UTIuSorZ_yASBUxomcDjJaiDjzEYK2fBNelaiaBcxCwXMcuvmBN8uLL2VWOmv-gq1wSgJfDmavPxh0pe3z6MvqX5csbFzrz_zKjwms4hnMqn8VBOLod0zO7PpSCfzEmXjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19409858</pqid></control><display><type>article</type><title>Correction of phase offset errors in main pulmonary artery flow quantification</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><creator>Lankhaar, Jan-Willem ; Hofman, Mark B.M. ; Marcus, J. Tim ; Zwanenburg, Jaco J.M. ; Faes, Theo J.C. ; Vonk-Noordegraaf, Anton</creator><creatorcontrib>Lankhaar, Jan-Willem ; Hofman, Mark B.M. ; Marcus, J. Tim ; Zwanenburg, Jaco J.M. ; Faes, Theo J.C. ; Vonk-Noordegraaf, Anton</creatorcontrib><description>Purpose
To investigate whether an existing method for correction of phase offset errors in phase‐contrast velocity quantification is applicable for assessment of main pulmonary artery flow with an MR scanner equipped with a high‐power gradient system.
Materials and Methods
The correction method consists of fitting a surface through the time average of stationary pixels of velocity‐encoded phase images, and subtracting this surface from the velocity images. Pixels are regarded as stationary if their time standard deviation falls into the lowest percentile. Flow was measured in the main pulmonary artery of 15 subjects. Each measurement was repeated on a stationary phantom. The phase offset error in the phantom was used as a reference. Correction was applied with varying polynomial surface orders (0–5) and stationarity percentiles (5–50%). The optimal surface order and stationarity percentile were determined by comparing the fitted surface with the phantom.
Results
Using a first‐order surface and a (noncritical) 25% percentile, the correction method significantly reduced the phase offset error from 1.1 to 0.35 cm/second (RMS), which is equivalent to a reduction from 11% to 3.3% of mean volume flow. Phase error correction strongly affected stroke volume (range –11 to 26%).
Conclusion
The method significantly reduces phase offset errors in pulmonary artery flow. J. Magn. Reson. Imaging 2005;22:73–79. © 2005 Wiley‐Liss, Inc.</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.20361</identifier><identifier>PMID: 15971181</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adult ; Aged ; Blood Flow Velocity ; eddy-current-induced fields ; Female ; Humans ; Hypertension, Pulmonary - diagnosis ; Magnetic Resonance Imaging - methods ; Male ; Models, Theoretical ; Phantoms, Imaging ; phase error correction ; phase offset error ; phase-contrast velocity quantification ; Pulmonary Artery - physiology ; pulmonary blood flow ; stroke volume</subject><ispartof>Journal of magnetic resonance imaging, 2005-07, Vol.22 (1), p.73-79</ispartof><rights>Copyright © 2005 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4981-660fd257a0a32b729ac1591e9132a24b7c3d342ffbb0c6fb71bac6afa24279293</citedby><cites>FETCH-LOGICAL-c4981-660fd257a0a32b729ac1591e9132a24b7c3d342ffbb0c6fb71bac6afa24279293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.20361$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.20361$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15971181$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lankhaar, Jan-Willem</creatorcontrib><creatorcontrib>Hofman, Mark B.M.</creatorcontrib><creatorcontrib>Marcus, J. Tim</creatorcontrib><creatorcontrib>Zwanenburg, Jaco J.M.</creatorcontrib><creatorcontrib>Faes, Theo J.C.</creatorcontrib><creatorcontrib>Vonk-Noordegraaf, Anton</creatorcontrib><title>Correction of phase offset errors in main pulmonary artery flow quantification</title><title>Journal of magnetic resonance imaging</title><addtitle>J. Magn. Reson. Imaging</addtitle><description>Purpose
To investigate whether an existing method for correction of phase offset errors in phase‐contrast velocity quantification is applicable for assessment of main pulmonary artery flow with an MR scanner equipped with a high‐power gradient system.
Materials and Methods
The correction method consists of fitting a surface through the time average of stationary pixels of velocity‐encoded phase images, and subtracting this surface from the velocity images. Pixels are regarded as stationary if their time standard deviation falls into the lowest percentile. Flow was measured in the main pulmonary artery of 15 subjects. Each measurement was repeated on a stationary phantom. The phase offset error in the phantom was used as a reference. Correction was applied with varying polynomial surface orders (0–5) and stationarity percentiles (5–50%). The optimal surface order and stationarity percentile were determined by comparing the fitted surface with the phantom.
Results
Using a first‐order surface and a (noncritical) 25% percentile, the correction method significantly reduced the phase offset error from 1.1 to 0.35 cm/second (RMS), which is equivalent to a reduction from 11% to 3.3% of mean volume flow. Phase error correction strongly affected stroke volume (range –11 to 26%).
Conclusion
The method significantly reduces phase offset errors in pulmonary artery flow. J. Magn. Reson. Imaging 2005;22:73–79. © 2005 Wiley‐Liss, Inc.</description><subject>Adult</subject><subject>Aged</subject><subject>Blood Flow Velocity</subject><subject>eddy-current-induced fields</subject><subject>Female</subject><subject>Humans</subject><subject>Hypertension, Pulmonary - diagnosis</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Models, Theoretical</subject><subject>Phantoms, Imaging</subject><subject>phase error correction</subject><subject>phase offset error</subject><subject>phase-contrast velocity quantification</subject><subject>Pulmonary Artery - physiology</subject><subject>pulmonary blood flow</subject><subject>stroke volume</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1PAyEQhonR-H3xB5g9eTBZ5WOB5aiN1hqt0dR4JCyFiO4uLexG_fdSW_WmF2YSnnky8wJwgOAJghCfvjTBnWBIGFoD24hinGNasvXUQ0pyVEK-BXZifIEQClHQTbCFqOAIlWgbjAc-BKM759vM22z2rKJJjY2my0wIPsTMtVmj0jPr68a3KnxkKnQmFVv7t2zeq7Zz1mm1cOyBDavqaPZXdRc8Xl5MBlf5zd1wNDi7yXUhSpQzBu0UU66gIrjiWCidVkJGIIIVLiquyZQU2NqqgprZiqNKaaZs-sNcYEF2wdHSOwt-3pvYycZFbepatcb3UTIuSorZ_yASBUxomcDjJaiDjzEYK2fBNelaiaBcxCwXMcuvmBN8uLL2VWOmv-gq1wSgJfDmavPxh0pe3z6MvqX5csbFzrz_zKjwms4hnMqn8VBOLod0zO7PpSCfzEmXjQ</recordid><startdate>200507</startdate><enddate>200507</enddate><creator>Lankhaar, Jan-Willem</creator><creator>Hofman, Mark B.M.</creator><creator>Marcus, J. Tim</creator><creator>Zwanenburg, Jaco J.M.</creator><creator>Faes, Theo J.C.</creator><creator>Vonk-Noordegraaf, Anton</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200507</creationdate><title>Correction of phase offset errors in main pulmonary artery flow quantification</title><author>Lankhaar, Jan-Willem ; Hofman, Mark B.M. ; Marcus, J. Tim ; Zwanenburg, Jaco J.M. ; Faes, Theo J.C. ; Vonk-Noordegraaf, Anton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4981-660fd257a0a32b729ac1591e9132a24b7c3d342ffbb0c6fb71bac6afa24279293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Blood Flow Velocity</topic><topic>eddy-current-induced fields</topic><topic>Female</topic><topic>Humans</topic><topic>Hypertension, Pulmonary - diagnosis</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Models, Theoretical</topic><topic>Phantoms, Imaging</topic><topic>phase error correction</topic><topic>phase offset error</topic><topic>phase-contrast velocity quantification</topic><topic>Pulmonary Artery - physiology</topic><topic>pulmonary blood flow</topic><topic>stroke volume</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lankhaar, Jan-Willem</creatorcontrib><creatorcontrib>Hofman, Mark B.M.</creatorcontrib><creatorcontrib>Marcus, J. Tim</creatorcontrib><creatorcontrib>Zwanenburg, Jaco J.M.</creatorcontrib><creatorcontrib>Faes, Theo J.C.</creatorcontrib><creatorcontrib>Vonk-Noordegraaf, Anton</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lankhaar, Jan-Willem</au><au>Hofman, Mark B.M.</au><au>Marcus, J. Tim</au><au>Zwanenburg, Jaco J.M.</au><au>Faes, Theo J.C.</au><au>Vonk-Noordegraaf, Anton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correction of phase offset errors in main pulmonary artery flow quantification</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J. Magn. Reson. Imaging</addtitle><date>2005-07</date><risdate>2005</risdate><volume>22</volume><issue>1</issue><spage>73</spage><epage>79</epage><pages>73-79</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Purpose
To investigate whether an existing method for correction of phase offset errors in phase‐contrast velocity quantification is applicable for assessment of main pulmonary artery flow with an MR scanner equipped with a high‐power gradient system.
Materials and Methods
The correction method consists of fitting a surface through the time average of stationary pixels of velocity‐encoded phase images, and subtracting this surface from the velocity images. Pixels are regarded as stationary if their time standard deviation falls into the lowest percentile. Flow was measured in the main pulmonary artery of 15 subjects. Each measurement was repeated on a stationary phantom. The phase offset error in the phantom was used as a reference. Correction was applied with varying polynomial surface orders (0–5) and stationarity percentiles (5–50%). The optimal surface order and stationarity percentile were determined by comparing the fitted surface with the phantom.
Results
Using a first‐order surface and a (noncritical) 25% percentile, the correction method significantly reduced the phase offset error from 1.1 to 0.35 cm/second (RMS), which is equivalent to a reduction from 11% to 3.3% of mean volume flow. Phase error correction strongly affected stroke volume (range –11 to 26%).
Conclusion
The method significantly reduces phase offset errors in pulmonary artery flow. J. Magn. Reson. Imaging 2005;22:73–79. © 2005 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15971181</pmid><doi>10.1002/jmri.20361</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-1807 |
ispartof | Journal of magnetic resonance imaging, 2005-07, Vol.22 (1), p.73-79 |
issn | 1053-1807 1522-2586 |
language | eng |
recordid | cdi_proquest_miscellaneous_67985269 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content |
subjects | Adult Aged Blood Flow Velocity eddy-current-induced fields Female Humans Hypertension, Pulmonary - diagnosis Magnetic Resonance Imaging - methods Male Models, Theoretical Phantoms, Imaging phase error correction phase offset error phase-contrast velocity quantification Pulmonary Artery - physiology pulmonary blood flow stroke volume |
title | Correction of phase offset errors in main pulmonary artery flow quantification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A54%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correction%20of%20phase%20offset%20errors%20in%20main%20pulmonary%20artery%20flow%20quantification&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Lankhaar,%20Jan-Willem&rft.date=2005-07&rft.volume=22&rft.issue=1&rft.spage=73&rft.epage=79&rft.pages=73-79&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.20361&rft_dat=%3Cproquest_cross%3E19409858%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19409858&rft_id=info:pmid/15971181&rfr_iscdi=true |