Correction of phase offset errors in main pulmonary artery flow quantification

Purpose To investigate whether an existing method for correction of phase offset errors in phase‐contrast velocity quantification is applicable for assessment of main pulmonary artery flow with an MR scanner equipped with a high‐power gradient system. Materials and Methods The correction method cons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance imaging 2005-07, Vol.22 (1), p.73-79
Hauptverfasser: Lankhaar, Jan-Willem, Hofman, Mark B.M., Marcus, J. Tim, Zwanenburg, Jaco J.M., Faes, Theo J.C., Vonk-Noordegraaf, Anton
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 79
container_issue 1
container_start_page 73
container_title Journal of magnetic resonance imaging
container_volume 22
creator Lankhaar, Jan-Willem
Hofman, Mark B.M.
Marcus, J. Tim
Zwanenburg, Jaco J.M.
Faes, Theo J.C.
Vonk-Noordegraaf, Anton
description Purpose To investigate whether an existing method for correction of phase offset errors in phase‐contrast velocity quantification is applicable for assessment of main pulmonary artery flow with an MR scanner equipped with a high‐power gradient system. Materials and Methods The correction method consists of fitting a surface through the time average of stationary pixels of velocity‐encoded phase images, and subtracting this surface from the velocity images. Pixels are regarded as stationary if their time standard deviation falls into the lowest percentile. Flow was measured in the main pulmonary artery of 15 subjects. Each measurement was repeated on a stationary phantom. The phase offset error in the phantom was used as a reference. Correction was applied with varying polynomial surface orders (0–5) and stationarity percentiles (5–50%). The optimal surface order and stationarity percentile were determined by comparing the fitted surface with the phantom. Results Using a first‐order surface and a (noncritical) 25% percentile, the correction method significantly reduced the phase offset error from 1.1 to 0.35 cm/second (RMS), which is equivalent to a reduction from 11% to 3.3% of mean volume flow. Phase error correction strongly affected stroke volume (range –11 to 26%). Conclusion The method significantly reduces phase offset errors in pulmonary artery flow. J. Magn. Reson. Imaging 2005;22:73–79. © 2005 Wiley‐Liss, Inc.
doi_str_mv 10.1002/jmri.20361
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67985269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19409858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4981-660fd257a0a32b729ac1591e9132a24b7c3d342ffbb0c6fb71bac6afa24279293</originalsourceid><addsrcrecordid>eNqFkE1PAyEQhonR-H3xB5g9eTBZ5WOB5aiN1hqt0dR4JCyFiO4uLexG_fdSW_WmF2YSnnky8wJwgOAJghCfvjTBnWBIGFoD24hinGNasvXUQ0pyVEK-BXZifIEQClHQTbCFqOAIlWgbjAc-BKM759vM22z2rKJJjY2my0wIPsTMtVmj0jPr68a3KnxkKnQmFVv7t2zeq7Zz1mm1cOyBDavqaPZXdRc8Xl5MBlf5zd1wNDi7yXUhSpQzBu0UU66gIrjiWCidVkJGIIIVLiquyZQU2NqqgprZiqNKaaZs-sNcYEF2wdHSOwt-3pvYycZFbepatcb3UTIuSorZ_yASBUxomcDjJaiDjzEYK2fBNelaiaBcxCwXMcuvmBN8uLL2VWOmv-gq1wSgJfDmavPxh0pe3z6MvqX5csbFzrz_zKjwms4hnMqn8VBOLod0zO7PpSCfzEmXjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19409858</pqid></control><display><type>article</type><title>Correction of phase offset errors in main pulmonary artery flow quantification</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><creator>Lankhaar, Jan-Willem ; Hofman, Mark B.M. ; Marcus, J. Tim ; Zwanenburg, Jaco J.M. ; Faes, Theo J.C. ; Vonk-Noordegraaf, Anton</creator><creatorcontrib>Lankhaar, Jan-Willem ; Hofman, Mark B.M. ; Marcus, J. Tim ; Zwanenburg, Jaco J.M. ; Faes, Theo J.C. ; Vonk-Noordegraaf, Anton</creatorcontrib><description>Purpose To investigate whether an existing method for correction of phase offset errors in phase‐contrast velocity quantification is applicable for assessment of main pulmonary artery flow with an MR scanner equipped with a high‐power gradient system. Materials and Methods The correction method consists of fitting a surface through the time average of stationary pixels of velocity‐encoded phase images, and subtracting this surface from the velocity images. Pixels are regarded as stationary if their time standard deviation falls into the lowest percentile. Flow was measured in the main pulmonary artery of 15 subjects. Each measurement was repeated on a stationary phantom. The phase offset error in the phantom was used as a reference. Correction was applied with varying polynomial surface orders (0–5) and stationarity percentiles (5–50%). The optimal surface order and stationarity percentile were determined by comparing the fitted surface with the phantom. Results Using a first‐order surface and a (noncritical) 25% percentile, the correction method significantly reduced the phase offset error from 1.1 to 0.35 cm/second (RMS), which is equivalent to a reduction from 11% to 3.3% of mean volume flow. Phase error correction strongly affected stroke volume (range –11 to 26%). Conclusion The method significantly reduces phase offset errors in pulmonary artery flow. J. Magn. Reson. Imaging 2005;22:73–79. © 2005 Wiley‐Liss, Inc.</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.20361</identifier><identifier>PMID: 15971181</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adult ; Aged ; Blood Flow Velocity ; eddy-current-induced fields ; Female ; Humans ; Hypertension, Pulmonary - diagnosis ; Magnetic Resonance Imaging - methods ; Male ; Models, Theoretical ; Phantoms, Imaging ; phase error correction ; phase offset error ; phase-contrast velocity quantification ; Pulmonary Artery - physiology ; pulmonary blood flow ; stroke volume</subject><ispartof>Journal of magnetic resonance imaging, 2005-07, Vol.22 (1), p.73-79</ispartof><rights>Copyright © 2005 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4981-660fd257a0a32b729ac1591e9132a24b7c3d342ffbb0c6fb71bac6afa24279293</citedby><cites>FETCH-LOGICAL-c4981-660fd257a0a32b729ac1591e9132a24b7c3d342ffbb0c6fb71bac6afa24279293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.20361$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.20361$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15971181$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lankhaar, Jan-Willem</creatorcontrib><creatorcontrib>Hofman, Mark B.M.</creatorcontrib><creatorcontrib>Marcus, J. Tim</creatorcontrib><creatorcontrib>Zwanenburg, Jaco J.M.</creatorcontrib><creatorcontrib>Faes, Theo J.C.</creatorcontrib><creatorcontrib>Vonk-Noordegraaf, Anton</creatorcontrib><title>Correction of phase offset errors in main pulmonary artery flow quantification</title><title>Journal of magnetic resonance imaging</title><addtitle>J. Magn. Reson. Imaging</addtitle><description>Purpose To investigate whether an existing method for correction of phase offset errors in phase‐contrast velocity quantification is applicable for assessment of main pulmonary artery flow with an MR scanner equipped with a high‐power gradient system. Materials and Methods The correction method consists of fitting a surface through the time average of stationary pixels of velocity‐encoded phase images, and subtracting this surface from the velocity images. Pixels are regarded as stationary if their time standard deviation falls into the lowest percentile. Flow was measured in the main pulmonary artery of 15 subjects. Each measurement was repeated on a stationary phantom. The phase offset error in the phantom was used as a reference. Correction was applied with varying polynomial surface orders (0–5) and stationarity percentiles (5–50%). The optimal surface order and stationarity percentile were determined by comparing the fitted surface with the phantom. Results Using a first‐order surface and a (noncritical) 25% percentile, the correction method significantly reduced the phase offset error from 1.1 to 0.35 cm/second (RMS), which is equivalent to a reduction from 11% to 3.3% of mean volume flow. Phase error correction strongly affected stroke volume (range –11 to 26%). Conclusion The method significantly reduces phase offset errors in pulmonary artery flow. J. Magn. Reson. Imaging 2005;22:73–79. © 2005 Wiley‐Liss, Inc.</description><subject>Adult</subject><subject>Aged</subject><subject>Blood Flow Velocity</subject><subject>eddy-current-induced fields</subject><subject>Female</subject><subject>Humans</subject><subject>Hypertension, Pulmonary - diagnosis</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Models, Theoretical</subject><subject>Phantoms, Imaging</subject><subject>phase error correction</subject><subject>phase offset error</subject><subject>phase-contrast velocity quantification</subject><subject>Pulmonary Artery - physiology</subject><subject>pulmonary blood flow</subject><subject>stroke volume</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1PAyEQhonR-H3xB5g9eTBZ5WOB5aiN1hqt0dR4JCyFiO4uLexG_fdSW_WmF2YSnnky8wJwgOAJghCfvjTBnWBIGFoD24hinGNasvXUQ0pyVEK-BXZifIEQClHQTbCFqOAIlWgbjAc-BKM759vM22z2rKJJjY2my0wIPsTMtVmj0jPr68a3KnxkKnQmFVv7t2zeq7Zz1mm1cOyBDavqaPZXdRc8Xl5MBlf5zd1wNDi7yXUhSpQzBu0UU66gIrjiWCidVkJGIIIVLiquyZQU2NqqgprZiqNKaaZs-sNcYEF2wdHSOwt-3pvYycZFbepatcb3UTIuSorZ_yASBUxomcDjJaiDjzEYK2fBNelaiaBcxCwXMcuvmBN8uLL2VWOmv-gq1wSgJfDmavPxh0pe3z6MvqX5csbFzrz_zKjwms4hnMqn8VBOLod0zO7PpSCfzEmXjQ</recordid><startdate>200507</startdate><enddate>200507</enddate><creator>Lankhaar, Jan-Willem</creator><creator>Hofman, Mark B.M.</creator><creator>Marcus, J. Tim</creator><creator>Zwanenburg, Jaco J.M.</creator><creator>Faes, Theo J.C.</creator><creator>Vonk-Noordegraaf, Anton</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200507</creationdate><title>Correction of phase offset errors in main pulmonary artery flow quantification</title><author>Lankhaar, Jan-Willem ; Hofman, Mark B.M. ; Marcus, J. Tim ; Zwanenburg, Jaco J.M. ; Faes, Theo J.C. ; Vonk-Noordegraaf, Anton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4981-660fd257a0a32b729ac1591e9132a24b7c3d342ffbb0c6fb71bac6afa24279293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Blood Flow Velocity</topic><topic>eddy-current-induced fields</topic><topic>Female</topic><topic>Humans</topic><topic>Hypertension, Pulmonary - diagnosis</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Models, Theoretical</topic><topic>Phantoms, Imaging</topic><topic>phase error correction</topic><topic>phase offset error</topic><topic>phase-contrast velocity quantification</topic><topic>Pulmonary Artery - physiology</topic><topic>pulmonary blood flow</topic><topic>stroke volume</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lankhaar, Jan-Willem</creatorcontrib><creatorcontrib>Hofman, Mark B.M.</creatorcontrib><creatorcontrib>Marcus, J. Tim</creatorcontrib><creatorcontrib>Zwanenburg, Jaco J.M.</creatorcontrib><creatorcontrib>Faes, Theo J.C.</creatorcontrib><creatorcontrib>Vonk-Noordegraaf, Anton</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lankhaar, Jan-Willem</au><au>Hofman, Mark B.M.</au><au>Marcus, J. Tim</au><au>Zwanenburg, Jaco J.M.</au><au>Faes, Theo J.C.</au><au>Vonk-Noordegraaf, Anton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correction of phase offset errors in main pulmonary artery flow quantification</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J. Magn. Reson. Imaging</addtitle><date>2005-07</date><risdate>2005</risdate><volume>22</volume><issue>1</issue><spage>73</spage><epage>79</epage><pages>73-79</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Purpose To investigate whether an existing method for correction of phase offset errors in phase‐contrast velocity quantification is applicable for assessment of main pulmonary artery flow with an MR scanner equipped with a high‐power gradient system. Materials and Methods The correction method consists of fitting a surface through the time average of stationary pixels of velocity‐encoded phase images, and subtracting this surface from the velocity images. Pixels are regarded as stationary if their time standard deviation falls into the lowest percentile. Flow was measured in the main pulmonary artery of 15 subjects. Each measurement was repeated on a stationary phantom. The phase offset error in the phantom was used as a reference. Correction was applied with varying polynomial surface orders (0–5) and stationarity percentiles (5–50%). The optimal surface order and stationarity percentile were determined by comparing the fitted surface with the phantom. Results Using a first‐order surface and a (noncritical) 25% percentile, the correction method significantly reduced the phase offset error from 1.1 to 0.35 cm/second (RMS), which is equivalent to a reduction from 11% to 3.3% of mean volume flow. Phase error correction strongly affected stroke volume (range –11 to 26%). Conclusion The method significantly reduces phase offset errors in pulmonary artery flow. J. Magn. Reson. Imaging 2005;22:73–79. © 2005 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15971181</pmid><doi>10.1002/jmri.20361</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-1807
ispartof Journal of magnetic resonance imaging, 2005-07, Vol.22 (1), p.73-79
issn 1053-1807
1522-2586
language eng
recordid cdi_proquest_miscellaneous_67985269
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content
subjects Adult
Aged
Blood Flow Velocity
eddy-current-induced fields
Female
Humans
Hypertension, Pulmonary - diagnosis
Magnetic Resonance Imaging - methods
Male
Models, Theoretical
Phantoms, Imaging
phase error correction
phase offset error
phase-contrast velocity quantification
Pulmonary Artery - physiology
pulmonary blood flow
stroke volume
title Correction of phase offset errors in main pulmonary artery flow quantification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A54%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correction%20of%20phase%20offset%20errors%20in%20main%20pulmonary%20artery%20flow%20quantification&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Lankhaar,%20Jan-Willem&rft.date=2005-07&rft.volume=22&rft.issue=1&rft.spage=73&rft.epage=79&rft.pages=73-79&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.20361&rft_dat=%3Cproquest_cross%3E19409858%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19409858&rft_id=info:pmid/15971181&rfr_iscdi=true