Time-course of the human medial olivocochlear reflex

The time-course of the human medial olivocochlear reflex (MOCR) was measured via its suppression of stimulus-frequency otoacoustic emissions (SFOAEs) in nine ears. MOCR effects were elicited by contralateral, ipsilateral or bilateral wideband acoustic stimulation. As a first approximation, MOCR effe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2006-05, Vol.119 (5), p.2889-2904
Hauptverfasser: Backus, Bradford C., Guinan, John J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The time-course of the human medial olivocochlear reflex (MOCR) was measured via its suppression of stimulus-frequency otoacoustic emissions (SFOAEs) in nine ears. MOCR effects were elicited by contralateral, ipsilateral or bilateral wideband acoustic stimulation. As a first approximation, MOCR effects increased like a saturating exponential with a time constant of 277 ± 62 ms , and decayed exponentially with a time constant of 159 ± 54 ms . However, in ears with the highest signal-to-noise ratios ( 4 ∕ 9 ) , onset time constants could be separated into "fast," τ = ∼ 70 ms , "medium," τ = ∼ 330 ms , and "slow," τ = ∼ 25 s components, and there was an overshoot in the decay like an under-damped sinusoid. Both the buildup and decay could be modeled as a second order differential equation and the differences between the buildup and decay could be accounted for by decreasing one coefficient by a factor of 2. The reflex onset and offset delays were both ∼ 25 ms . Although changing elicitor level over a 20 dB SPL range produced a consistent systematic change in response amplitude, the time course did not show a consistent dependence on elictor level, nor did the time-courses of ipsilaterally, contralaterally, and bilaterally activated MOCR responses differ significantly. Given the MOCR's time-course, it is best suited to operate on acoustic changes that persist for 100's of milliseconds.
ISSN:0001-4966
1520-8524
DOI:10.1121/1.2169918