Nanoscale adhesion, friction and wear studies of biomolecules on silicon based surfaces

Protein layers are deployed over the surfaces of microdevices such as biological microelectromechanical systems (bioMEMS) and bioimplants as functional layers that confer specific molecular recognition or binding properties or to facilitate biocompatibility with biological tissue. When a microdevice...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2006, Vol.2 (1), p.39-49
Hauptverfasser: Bhushan, Bharat, Tokachichu, Dharma R., Keener, Matthew T., Lee, Stephen C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Protein layers are deployed over the surfaces of microdevices such as biological microelectromechanical systems (bioMEMS) and bioimplants as functional layers that confer specific molecular recognition or binding properties or to facilitate biocompatibility with biological tissue. When a microdevice comes in contact with any exterior environment, like tissues and/or fluids with a variable pH, the biomolecules on its surface may get abraded. Silicon based bioMEMS are an important class of devices. Adhesion, friction and wear properties of biomolecules (e.g., proteins) on silicon based surfaces are therefore important. Adhesion was studied between streptavidin and a thermally grown silica substrate in a phosphate buffered saline (PBS) solution with various pH values as a function of the concentration of biomolecules in the solution. Friction and wear properties of streptavidin (protein) biomolecules coated on silica by direct physical adsorption and a chemical linker method were studied in PBS using the tapping mode atomic force microscopy at a range of free amplitude voltages. Fluorescence microscopy was used to study the detailed wear mechanism of the biomolecules. Based on this study, adhesion, friction and wear mechanisms of biomolecules on silicon based surfaces are discussed.
ISSN:1742-7061
1878-7568
DOI:10.1016/j.actbio.2005.08.010