P2Y12 receptor signalling towards PKB proceeds through IGF-I receptor cross-talk and requires activation of Src, Pyk2 and Rap1
Previously it was shown that stimulation of the P2Y12 receptor activates PKB signalling in C6 glioma cells [K. Van Kolen and H. Slegers, J. Neurochem. 89, 442.]. In the present study, the mechanisms involved in this response were further elucidated. In cells transfected with the Gbetagamma-scavenger...
Gespeichert in:
Veröffentlicht in: | Cellular signalling 2006-08, Vol.18 (8), p.1169-1181 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Previously it was shown that stimulation of the P2Y12 receptor activates PKB signalling in C6 glioma cells [K. Van Kolen and H. Slegers, J. Neurochem. 89, 442.]. In the present study, the mechanisms involved in this response were further elucidated. In cells transfected with the Gbetagamma-scavenger beta-ARK1/GRK2 or Rap1GAPII, stimulation with 2MeSADP failed to enhance PKB phosphorylation demonstrating that the signalling proceeds through Gbetagamma-subunits and Rap1. Moreover, Rap1-GTP pull-down assays revealed that P2Y12 receptor stimulation induced a rapid activation of Rap1. Treatment of cells with the Ca2+ chelator BAPTA-AM and inhibition of Src and PLD2 with PP2 or 1-butanol, respectively, abrogated P2Y12 receptor-mediated activation of Rap1 and PKB. In addition inhibition of PKCzeta decreased basal and 2MeSADP-stimulated phosphorylation of PKB indicating a role for this PKC isoform in PKB signalling. Although the increased PKB phosphorylation was abolished in the presence of the IGF-I receptor tyrosine kinase inhibitor AG 1024, 2MeSADP did not significantly increase receptor phosphorylation. Nevertheless, phosphorylation of a 120 kDa IGF-I receptor-associated protein was observed. The latter protein was identified by MALDI-TOF/TOF-MS as the proline-rich tyrosine kinase 2 (Pyk2) that co-operates with Src in a PLD2-dependent manner. Consistent with the signalling towards Rap1 and PKB, activation of Pyk2 was abrogated by Ca2+ chelation, inhibition of PLD2 and IGF-I receptor tyrosine kinase activity. In conclusion, the data reveal a novel type of cross-talk between P2Y12 and IGF-I receptors that proceeds through Gbetagamma-, Ca2+-and PLD2-dependent activation of the Pyk2/Src pathway resulting in GTP-loading of Rap1 required for an increased PKB phosphorylation. |
---|---|
ISSN: | 0898-6568 |
DOI: | 10.1016/j.cellsig.2005.09.005 |