The Retinol-binding Protein System: A Potential Paradigm for Steroid-binding Globulins?
Abstract Retinol (vitamin A) is an example of a small molecule that is essential for higher organisms; its utilisation has been involved in the evolution of a number of proteins. In mammalian species, retinol is obtained from the diet and controls the release of its binding protein from hepatocytes...
Gespeichert in:
Veröffentlicht in: | Hormone and metabolic research 2006-04, Vol.38 (4), p.269-278 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Retinol (vitamin A) is an example of a small molecule that is essential for higher organisms; its utilisation has been involved in the evolution of a number of proteins. In mammalian species, retinol is obtained from the diet and controls the release of its binding protein from hepatocytes into the blood stream. Subsequent influx into cells under normal situations usually involves a specific membrane-bound receptor for retinol-binding protein, which facilitates the uptake of retinol alone or bound to its carrier. This specific receptor has not yet been identified, but a receptor for a related lipocalin has been cloned. It represents a relatively new family, and there are a number of related genes in various eukaryotic genomes, suggesting that the system is very widespread in multicellular organisms. Its significance has been highlighted recently by the suggestion that retinol-binding protein, through its receptor, may play a major role in type 2 diabetes, perhaps the greatest scourge of modern society. This system may provide a new paradigm in mammalian biology, another example of which may exist in the processes responsible for steroid handling. This review outlines the characteristics of retinol utilisation in mammalian species, focusing primarily on the uptake system. |
---|---|
ISSN: | 0018-5043 1439-4286 |
DOI: | 10.1055/s-2006-925349 |