In Ewing's sarcoma CCN3(NOV) inhibits proliferation while promoting migration and invasion of the same cell type

Altered expression of CCN3 has been observed in a variety of musculoskeletal tumours, including Ewing's sarcoma (ES). Despite its widespread distribution, very little is known about its biological functions and molecular mechanisms of action. We transfected CCN3 gene into a CCN3-negative ES cel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2005-06, Vol.24 (27), p.4349-4361
Hauptverfasser: Benini, Stefania, Perbal, Bernard, Zambelli, Diana, Colombo, Mario Paolo, Manara, Maria Cristina, Serra, Massimo, Parenza, Mariella, Martinez, Vincent, Picci, Piero, Scotlandi, Katia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Altered expression of CCN3 has been observed in a variety of musculoskeletal tumours, including Ewing's sarcoma (ES). Despite its widespread distribution, very little is known about its biological functions and molecular mechanisms of action. We transfected CCN3 gene into a CCN3-negative ES cell line and analysed the in vitro and in vivo behaviours of stably transfected clones. Forced expression of CCN3 significantly reduced cell proliferation in vitro, growth in anchorage-independent conditions and tumorigenicity in nude mice. Despite the antiproliferative effect, CCN3-transfected ES cells displayed increased migration and invasion of Matrigel. The decreased expression of α2β1 integrin receptor and the increased amount of cell surface-associated matrix metalloproteinase (MMP)-9 following the expression of CCN3 may be the basis for the increased migratory abilities of transfected cells. Cells lacking α 2 β 1 are less facilitated to have stable anchorage since the predominant collagen extracted from ES tissue is indeed type I collagen and proMMP-9 was recently found to provide a cellular switch between stationary and migratory ES cell phase. Our findings are in line with those recently obtained in glioblastoma. However, the underlying molecular mechanisms appear to be different, further highlighting the importance of the cellular context in the regulation of function of CCN proteins.
ISSN:0950-9232
1476-5594
DOI:10.1038/sj.onc.1208620