Enabling proteomics discovery through visual analysis. The peptide permutation and protein prediction tool
Proteins play a key role in cellular processes, making proteomics central to understanding systems biology. MS techniques provide a means to observe entire proteomes at a global level. Yet, high-throughput MS proteomics techniques generate data faster than it can currently be analyzed. The success o...
Gespeichert in:
Veröffentlicht in: | IEEE engineering in medicine and biology magazine 2005-05, Vol.24 (3), p.50-57 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 57 |
---|---|
container_issue | 3 |
container_start_page | 50 |
container_title | IEEE engineering in medicine and biology magazine |
container_volume | 24 |
creator | Havre, Susan L Singhal, Mudita Payne, Deborah A Lipton, Mary S Weir Webb-Robertson, Bobbie-Jo M |
description | Proteins play a key role in cellular processes, making proteomics central to understanding systems biology. MS techniques provide a means to observe entire proteomes at a global level. Yet, high-throughput MS proteomics techniques generate data faster than it can currently be analyzed. The success of proteomics depends on high-throughput experimental techniques coupled with sophisticated visual analysis and data-mining methods. Visual analysis has been applied successfully in a number of fields plagued with huge, complex data sets and will likely be an important tool in proteomics discovery. PQuad, a novel visualization of MS proteomics data, provides powerful analysis capabilities that support a number of proteomic data applications. In particular, PQuad supports differential proteomics by simplifying the comparison of peptide sets from different experimental conditions as well as different protein identification or confidence scoring techniques. Finally, PQuad supports data validation and quality control by providing a variety of resolutions for huge amounts of data to reveal errors undetected by other methods. |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_67962316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67962316</sourcerecordid><originalsourceid>FETCH-LOGICAL-p541-291401d0f5a984aaf2d91ccea914d382748360db7727abea7f8f24e3c517f10b3</originalsourceid><addsrcrecordid>eNo1kMtqwzAQRbVoadK0v1C06s5FsmTLXpaQPiDQjfdmbI1jBdlyLTmQv6_apKsDl8Nl7tyQNVOiTDKushW59_7IGJdSZXdkxbNS8ULyNTnuRmisGQ90ml1AN5jWU2186044n2noZ7ccenoyfgFLYQR79sa_0KpHOuEUjP7lPCwBgnFjNPSlyYyRqE37Fwfn7AO57cB6fLxyQ6q3XbX9SPZf75_b130yZZInackl45p1GZSFBOhSXfK2RYi5FkWqZCFyphulUgUNguqKLpUo2riz46wRG_J8qY1nfC_oQz3EOWgtjOgWX-eqzFPB8yg-XcWlGVDX02wGmM_1_3PED39LYgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67962316</pqid></control><display><type>article</type><title>Enabling proteomics discovery through visual analysis. The peptide permutation and protein prediction tool</title><source>MEDLINE</source><source>IEEE Electronic Library (IEL)</source><creator>Havre, Susan L ; Singhal, Mudita ; Payne, Deborah A ; Lipton, Mary S Weir ; Webb-Robertson, Bobbie-Jo M</creator><creatorcontrib>Havre, Susan L ; Singhal, Mudita ; Payne, Deborah A ; Lipton, Mary S Weir ; Webb-Robertson, Bobbie-Jo M</creatorcontrib><description>Proteins play a key role in cellular processes, making proteomics central to understanding systems biology. MS techniques provide a means to observe entire proteomes at a global level. Yet, high-throughput MS proteomics techniques generate data faster than it can currently be analyzed. The success of proteomics depends on high-throughput experimental techniques coupled with sophisticated visual analysis and data-mining methods. Visual analysis has been applied successfully in a number of fields plagued with huge, complex data sets and will likely be an important tool in proteomics discovery. PQuad, a novel visualization of MS proteomics data, provides powerful analysis capabilities that support a number of proteomic data applications. In particular, PQuad supports differential proteomics by simplifying the comparison of peptide sets from different experimental conditions as well as different protein identification or confidence scoring techniques. Finally, PQuad supports data validation and quality control by providing a variety of resolutions for huge amounts of data to reveal errors undetected by other methods.</description><identifier>ISSN: 0739-5175</identifier><identifier>PMID: 15971841</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; Computer Graphics ; Gene Expression Profiling - methods ; Mass Spectrometry - methods ; Peptides - analysis ; Peptides - chemistry ; Peptides - genetics ; Peptides - metabolism ; Proteins - analysis ; Proteins - chemistry ; Proteins - genetics ; Proteins - metabolism ; Proteomics - methods ; Sequence Analysis, Protein - methods ; Software ; Systems Biology - methods ; User-Computer Interface</subject><ispartof>IEEE engineering in medicine and biology magazine, 2005-05, Vol.24 (3), p.50-57</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15971841$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Havre, Susan L</creatorcontrib><creatorcontrib>Singhal, Mudita</creatorcontrib><creatorcontrib>Payne, Deborah A</creatorcontrib><creatorcontrib>Lipton, Mary S Weir</creatorcontrib><creatorcontrib>Webb-Robertson, Bobbie-Jo M</creatorcontrib><title>Enabling proteomics discovery through visual analysis. The peptide permutation and protein prediction tool</title><title>IEEE engineering in medicine and biology magazine</title><addtitle>IEEE Eng Med Biol Mag</addtitle><description>Proteins play a key role in cellular processes, making proteomics central to understanding systems biology. MS techniques provide a means to observe entire proteomes at a global level. Yet, high-throughput MS proteomics techniques generate data faster than it can currently be analyzed. The success of proteomics depends on high-throughput experimental techniques coupled with sophisticated visual analysis and data-mining methods. Visual analysis has been applied successfully in a number of fields plagued with huge, complex data sets and will likely be an important tool in proteomics discovery. PQuad, a novel visualization of MS proteomics data, provides powerful analysis capabilities that support a number of proteomic data applications. In particular, PQuad supports differential proteomics by simplifying the comparison of peptide sets from different experimental conditions as well as different protein identification or confidence scoring techniques. Finally, PQuad supports data validation and quality control by providing a variety of resolutions for huge amounts of data to reveal errors undetected by other methods.</description><subject>Algorithms</subject><subject>Computer Graphics</subject><subject>Gene Expression Profiling - methods</subject><subject>Mass Spectrometry - methods</subject><subject>Peptides - analysis</subject><subject>Peptides - chemistry</subject><subject>Peptides - genetics</subject><subject>Peptides - metabolism</subject><subject>Proteins - analysis</subject><subject>Proteins - chemistry</subject><subject>Proteins - genetics</subject><subject>Proteins - metabolism</subject><subject>Proteomics - methods</subject><subject>Sequence Analysis, Protein - methods</subject><subject>Software</subject><subject>Systems Biology - methods</subject><subject>User-Computer Interface</subject><issn>0739-5175</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1kMtqwzAQRbVoadK0v1C06s5FsmTLXpaQPiDQjfdmbI1jBdlyLTmQv6_apKsDl8Nl7tyQNVOiTDKushW59_7IGJdSZXdkxbNS8ULyNTnuRmisGQ90ml1AN5jWU2186044n2noZ7ccenoyfgFLYQR79sa_0KpHOuEUjP7lPCwBgnFjNPSlyYyRqE37Fwfn7AO57cB6fLxyQ6q3XbX9SPZf75_b130yZZInackl45p1GZSFBOhSXfK2RYi5FkWqZCFyphulUgUNguqKLpUo2riz46wRG_J8qY1nfC_oQz3EOWgtjOgWX-eqzFPB8yg-XcWlGVDX02wGmM_1_3PED39LYgQ</recordid><startdate>200505</startdate><enddate>200505</enddate><creator>Havre, Susan L</creator><creator>Singhal, Mudita</creator><creator>Payne, Deborah A</creator><creator>Lipton, Mary S Weir</creator><creator>Webb-Robertson, Bobbie-Jo M</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>200505</creationdate><title>Enabling proteomics discovery through visual analysis. The peptide permutation and protein prediction tool</title><author>Havre, Susan L ; Singhal, Mudita ; Payne, Deborah A ; Lipton, Mary S Weir ; Webb-Robertson, Bobbie-Jo M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p541-291401d0f5a984aaf2d91ccea914d382748360db7727abea7f8f24e3c517f10b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Computer Graphics</topic><topic>Gene Expression Profiling - methods</topic><topic>Mass Spectrometry - methods</topic><topic>Peptides - analysis</topic><topic>Peptides - chemistry</topic><topic>Peptides - genetics</topic><topic>Peptides - metabolism</topic><topic>Proteins - analysis</topic><topic>Proteins - chemistry</topic><topic>Proteins - genetics</topic><topic>Proteins - metabolism</topic><topic>Proteomics - methods</topic><topic>Sequence Analysis, Protein - methods</topic><topic>Software</topic><topic>Systems Biology - methods</topic><topic>User-Computer Interface</topic><toplevel>online_resources</toplevel><creatorcontrib>Havre, Susan L</creatorcontrib><creatorcontrib>Singhal, Mudita</creatorcontrib><creatorcontrib>Payne, Deborah A</creatorcontrib><creatorcontrib>Lipton, Mary S Weir</creatorcontrib><creatorcontrib>Webb-Robertson, Bobbie-Jo M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE engineering in medicine and biology magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Havre, Susan L</au><au>Singhal, Mudita</au><au>Payne, Deborah A</au><au>Lipton, Mary S Weir</au><au>Webb-Robertson, Bobbie-Jo M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enabling proteomics discovery through visual analysis. The peptide permutation and protein prediction tool</atitle><jtitle>IEEE engineering in medicine and biology magazine</jtitle><addtitle>IEEE Eng Med Biol Mag</addtitle><date>2005-05</date><risdate>2005</risdate><volume>24</volume><issue>3</issue><spage>50</spage><epage>57</epage><pages>50-57</pages><issn>0739-5175</issn><abstract>Proteins play a key role in cellular processes, making proteomics central to understanding systems biology. MS techniques provide a means to observe entire proteomes at a global level. Yet, high-throughput MS proteomics techniques generate data faster than it can currently be analyzed. The success of proteomics depends on high-throughput experimental techniques coupled with sophisticated visual analysis and data-mining methods. Visual analysis has been applied successfully in a number of fields plagued with huge, complex data sets and will likely be an important tool in proteomics discovery. PQuad, a novel visualization of MS proteomics data, provides powerful analysis capabilities that support a number of proteomic data applications. In particular, PQuad supports differential proteomics by simplifying the comparison of peptide sets from different experimental conditions as well as different protein identification or confidence scoring techniques. Finally, PQuad supports data validation and quality control by providing a variety of resolutions for huge amounts of data to reveal errors undetected by other methods.</abstract><cop>United States</cop><pmid>15971841</pmid><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0739-5175 |
ispartof | IEEE engineering in medicine and biology magazine, 2005-05, Vol.24 (3), p.50-57 |
issn | 0739-5175 |
language | eng |
recordid | cdi_proquest_miscellaneous_67962316 |
source | MEDLINE; IEEE Electronic Library (IEL) |
subjects | Algorithms Computer Graphics Gene Expression Profiling - methods Mass Spectrometry - methods Peptides - analysis Peptides - chemistry Peptides - genetics Peptides - metabolism Proteins - analysis Proteins - chemistry Proteins - genetics Proteins - metabolism Proteomics - methods Sequence Analysis, Protein - methods Software Systems Biology - methods User-Computer Interface |
title | Enabling proteomics discovery through visual analysis. The peptide permutation and protein prediction tool |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T04%3A49%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enabling%20proteomics%20discovery%20through%20visual%20analysis.%20The%20peptide%20permutation%20and%20protein%20prediction%20tool&rft.jtitle=IEEE%20engineering%20in%20medicine%20and%20biology%20magazine&rft.au=Havre,%20Susan%20L&rft.date=2005-05&rft.volume=24&rft.issue=3&rft.spage=50&rft.epage=57&rft.pages=50-57&rft.issn=0739-5175&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E67962316%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67962316&rft_id=info:pmid/15971841&rfr_iscdi=true |