Expression of the Rat Renal PiT-2 Phosphate Transporter

Abstract BACKGROUND: NaPi-2a is the main sodium-dependent Pi (Na+-Pi) transporter in the apical membrane of the renal proximal tubule. Another group of Pi transporters, Glvr-1 (PiT-1) and Ram-1 (PiT-2), was identified. The PiT-2 cRNA induces Na + -dependent Pi uptake into XENOPUS LAEVIS oocytes. Pri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hormone and metabolic research 2005-05, Vol.37 (5), p.265-269
Hauptverfasser: Leung, J. C., Barac-Nieto, M., Hering-Smith, K., Silverstein, D. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract BACKGROUND: NaPi-2a is the main sodium-dependent Pi (Na+-Pi) transporter in the apical membrane of the renal proximal tubule. Another group of Pi transporters, Glvr-1 (PiT-1) and Ram-1 (PiT-2), was identified. The PiT-2 cRNA induces Na + -dependent Pi uptake into XENOPUS LAEVIS oocytes. Prior studies have revealed the presence of the Pit-2 transporter in the kidney. OBJECTIVES: Further characterization of the PiT-2 transporter in the kidney and assessment of its developmental regulation. METHODS: Using primers specific for the PiT-2 mRNA and an antibody specific for the PiT-2 protein, we assessed the expression and developmental regulation of the renal PiT-2 mRNA and protein. RESULTS: RT-PCR analysis revealed that a 182 bp product was evident in the total kidney (TK), cortex (C), and medulla (M). Northern blots demonstrated a PiT-2 mRNA of approximately 4kb (expected size) in the TK, C, and M. PiT-2 mRNA expression was similar in all kidney regions. RT-PCR and Northern blot analysis revealed that the PiT-2 cDNA was highly abundant in OK and MDCK culture cells. RT-PCR and Northern blot analysis revealed expected products at all ages studied. Densitometry demonstrated similar levels of expression of PiT-2 mRNA in the kidneys of older versus younger animals, and persistent expression in elderly rats. The PiT-2 protein was present in the TK, C, and M, and in OK and MDCK cells. PiT-2 protein abundance was similar at all ages studied. CONCLUSIONS: These studies further characterize the renal PiT-2 transporter and show that its expression is stable throughout development and ageing.
ISSN:0018-5043
1439-4286
DOI:10.1055/s-2005-870096