Substrate specificity and ionic regulation of GlnPQ from Lactococcus lactis. An ATP-binding cassette transporter with four extracytoplasmic substrate-binding domains

We report on the functional characterization of GlnPQ, an ATP-binding cassette transporter with four extracytoplasmic substrate-binding domains. The first predicted transmembrane helix of GlnP was cleaved off in the mature protein and most likely serves as the signal sequence for the extracytoplasmi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2005-06, Vol.280 (25), p.23785-23790
Hauptverfasser: Schuurman-Wolters, Gea K, Poolman, Bert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report on the functional characterization of GlnPQ, an ATP-binding cassette transporter with four extracytoplasmic substrate-binding domains. The first predicted transmembrane helix of GlnP was cleaved off in the mature protein and most likely serves as the signal sequence for the extracytoplasmic substrate-binding domains. Deletion analysis showed that the substrate-binding domain, in the primary sequence of GlnP nearest to the translocator domain, is used as the receptor that delivers the substrate to the translocator. Membrane reconstitution of the detergent-solubilized and purified GlnPQ complex yielded proteoliposomes that transported glutamine and glutamic acid at the expense of ATP. The transport activity of GlnPQ increased with lumenal salt concentration and internal pH, but the mechanism of ionic activation of the transporter is distinct from that of other osmoregulatory ATP-binding cassette transporters and does not depend on the presence of anionic lipids. The regulation of GlnPQ conforms to an electrostatic switch in which protein domain(s) and low molecular weight electrolytes participate.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M500522200