Scale Effects of Hydrostratigraphy and Recharge Zonation on Base Flow

Uncertainty regarding spatial variations of model parameters often results in the simplifying assumption that parameters are spatially uniform. However, spatial variability may be important in resource assessment and model calibration. In this paper, a methodology is presented for estimating a criti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ground water 2006-05, Vol.44 (3), p.362-370
Hauptverfasser: Juckem, Paul F., Hunt, Randall J., Anderson, Mary P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Uncertainty regarding spatial variations of model parameters often results in the simplifying assumption that parameters are spatially uniform. However, spatial variability may be important in resource assessment and model calibration. In this paper, a methodology is presented for estimating a critical basin size, above which base flows appear to be relatively less sensitive to the spatial distribution of recharge and hydraulic conductivity, and below which base flows are relatively more sensitive to this spatial variability. Application of the method is illustrated for a watershed that exhibits distinct infiltration patterns and hydrostratigraphic layering. A ground water flow model (MODFLOW) and a parameter estimation code (UCODE) were used to evaluate the influence of recharge zonation and hydrostratigraphic layering on base flow distribution. Optimization after removing spatial recharge variability from the calibrated model altered base flow simulations up to 53% in watersheds smaller than 40 km2. Merging six hydrostratigraphic units into one unit with average properties increased base flow residuals up to 83% in basins smaller than 50 km2. Base flow residuals changed
ISSN:0017-467X
1745-6584
DOI:10.1111/j.1745-6584.2005.00136.x