A variational Bayesian mixture modelling framework for cluster analysis of gene-expression data

Motivation: Accurate subcategorization of tumour types through gene-expression profiling requires analytical techniques that estimate the number of categories or clusters rigorously and reliably. Parametric mixture modelling provides a natural setting to address this problem. Results: We compare a c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2005-07, Vol.21 (13), p.3025-3033
Hauptverfasser: Teschendorff, Andrew E., Wang, Yanzhong, Barbosa-Morais, Nuno L., Brenton, James D., Caldas, Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivation: Accurate subcategorization of tumour types through gene-expression profiling requires analytical techniques that estimate the number of categories or clusters rigorously and reliably. Parametric mixture modelling provides a natural setting to address this problem. Results: We compare a criterion for model selection that is derived from a variational Bayesian framework with a popular alternative based on the Bayesian information criterion. Using simulated data, we show that the variational Bayesian method is more accurate in finding the true number of clusters in situations that are relevant to current and future microarray studies. We also compare the two criteria using freely available tumour microarray datasets and show that the variational Bayesian method is more sensitive to capturing biologically relevant structure. Availability: We have developed an R-package vabayelMix, available from www.cran.r-project.org, that implements the algorithm described in this paper. Contact: aet21@cam.ac.uk Supplementary information: http://bioinformatics.oxfordjournals.org
ISSN:1367-4803
1460-2059
1367-4811
DOI:10.1093/bioinformatics/bti466