Unified segmentation
A probabilistic framework is presented that enables image registration, tissue classification, and bias correction to be combined within the same generative model. A derivation of a log-likelihood objective function for the unified model is provided. The model is based on a mixture of Gaussians and...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2005-07, Vol.26 (3), p.839-851 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A probabilistic framework is presented that enables image registration, tissue classification, and bias correction to be combined within the same generative model. A derivation of a log-likelihood objective function for the unified model is provided. The model is based on a mixture of Gaussians and is extended to incorporate a smooth intensity variation and nonlinear registration with tissue probability maps. A strategy for optimising the model parameters is described, along with the requisite partial derivatives of the objective function. |
---|---|
ISSN: | 1053-8119 1095-9572 |
DOI: | 10.1016/j.neuroimage.2005.02.018 |