The influence of climate variability on numbers of three waterbird species in Western Port, Victoria, 1973-2002
Seasonal and annual movements of Australian waterbirds are generally more complex than those of their Northern Hemisphere counterparts, and long-term data are needed to understand their relationships with climatic variables. This paper explores a long-term (1973-2002) set of waterbird counts from co...
Gespeichert in:
Veröffentlicht in: | International journal of biometeorology 2006-05, Vol.50 (5), p.292-304 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Seasonal and annual movements of Australian waterbirds are generally more complex than those of their Northern Hemisphere counterparts, and long-term data are needed to understand their relationships with climatic variables. This paper explores a long-term (1973-2002) set of waterbird counts from coastal Victoria and relates them to climatic data at local and continental scales. Three species (Black Swan Cygnus atratus, White-faced Heron Egretta novaehollandiae and Grey Teal Anas gracilis) were chosen for this analysis. Black Swans have large local breeding populations near the study region; White-faced Herons have smaller local breeding populations and Grey Teal breed extensively in ephemeral inland floodplains, such as those in the Murray-Darling Basin. All showed significant relationships with streamflow, regional rainfall and the Southern Oscillation Index (SOI) at appropriate scales and time-lags, with streamflow explaining the most variance. Black Swans showed a strong seasonal cycle in abundance and local climate variables had the greatest influence on the counts. Numbers were positively correlated with streamflow in southern Victoria three to six seasons before each count. Broader-scale climatic patterns were more important for the other two species. Numbers of White-faced Herons were positively correlated with streamflow or rainfall over various parts of Australia seven to nine seasons before each count. Numbers of Grey Teal showed weak seasonal cycles, and were negatively correlated with rainfall in Victoria or the Murray-Darling Basin in the seasons before or during each count, and positively with streamflow in the Murray-Darling Basin 15-18 months before each count. |
---|---|
ISSN: | 0020-7128 1432-1254 |
DOI: | 10.1007/s00484-005-0019-2 |