Structure and stability of xenon insertion compounds of hypohalous acids, HXeOX [X=F, Cl, and Br]: an ab initio investigation
The structure and stability of xenon-inserted hypohalous acids HXeOX (X=F, Cl, and Br) have been investigated theoretically using ab initio molecular orbital calculations. All these molecules are found to consist of a nearly linear HXeO moiety and a bend XeOX fragment. Geometrical parameters of HXeO...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2006-04, Vol.124 (16), p.164309-164309 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The structure and stability of xenon-inserted hypohalous acids HXeOX (X=F, Cl, and Br) have been investigated theoretically using ab initio molecular orbital calculations. All these molecules are found to consist of a nearly linear HXeO moiety and a bend XeOX fragment. Geometrical parameters of HXeOX are comparable with that of experimentally observed HXeOH species. The dissociation energies corresponding to the lowest-energy fragmentation products, HOX+Xe have been computed to be -398.1, -385.5, and -386.7 kJmol for HXeOF, HXeOCl, and HXeOBr, respectively, at the MP2 level of theory. The respective barrier heights corresponding to the bent transition states (H-Xe-O bending mode) have been calculated to be 138.1, 138.4, and 138.2 kJmol with respect to HXeOX minimum. These species are found to be metastable in their respective potential-energy surface, and the dissociation energies corresponding to the H+Xe+OX products are found to be 56.8, 66.0, and 80.8 kJmol for HXeOF, HXeOCl, and HXeOBr, respectively. The energies corresponding to the H+Xe+O+X dissociation channel have been computed to be 272.0, 309.3, and 299.7 kJmol for HXeOF, HXeOCl, and HXeOBr, respectively, at the same level of theory. Energetics as well as geometrical considerations suggests that it may be possible to prepare these species experimentally similar to that of HXeOH species at low-temperature laser photolysis experiments. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.2193515 |