Normal stem cells and cancer stem cells : The niche matters
Scientists have tried for decades to understand cancer development in the context of therapeutic strategies. The realization that cancers may rely on "cancer stem cells" that share the self-renewal feature of normal stem cells has changed the perspective with regard to new approaches for t...
Gespeichert in:
Veröffentlicht in: | Cancer research (Chicago, Ill.) Ill.), 2006-05, Vol.66 (9), p.4553-4557 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Scientists have tried for decades to understand cancer development in the context of therapeutic strategies. The realization that cancers may rely on "cancer stem cells" that share the self-renewal feature of normal stem cells has changed the perspective with regard to new approaches for treating the disease. In this review, we propose that one of the differences between normal stem cells and cancer stem cells is their degree of dependence on the stem cell niche, a specialized microenvironment in which stem cells reside. The stem cell niche in adult somatic tissues plays an essential role in maintaining stem cells or preventing tumorigenesis by providing primarily inhibitory signals for both proliferation and differentiation. However, the niche also provides transient signals for stem cell division to support ongoing tissue regeneration. The balance between proliferation-inhibiting and proliferation-promoting signals is the key to homeostatic regulation of stem cell maintenance versus tissue regeneration. Loss of the niche can lead to loss of stem cells, indicating the reliance of stem cells on niche signals. Therefore, cancer stem cells may arise from an intrinsic mutation, leading to self-sufficient cell proliferation, and/or may also involve deregulation or alteration of the niche by dominant proliferation-promoting signals. Furthermore, the molecular machinery used by normal stem cells for homing to or mobilizing from the niche may be "hijacked" by cancer stem cells for invasion and metastasis. We hope this examination of the interaction between stem cells and their niche will enhance understanding of the process of cancer development, invasiveness, and metastasis and reveal possible targets for cancer treatment. |
---|---|
ISSN: | 0008-5472 1538-7445 |
DOI: | 10.1158/0008-5472.can-05-3986 |