Osteoinduction by biomaterials-Physicochemical and structural influences

Osteoinduction by biomaterials has been shown to be a real phenomenon by many investigators in the last decade. The exact mechanism of this phenomenon is, however, still largely unknown. This in vivo study in goats was performed to get insight into processes governing the phenomenon of osteoinductio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research 2006-06, Vol.77A (4), p.747-762
Hauptverfasser: Habibovic, Pamela, Sees, Tara M., van den Doel, Mirella A., van Blitterswijk, Clemens A., de Groot, Klaas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Osteoinduction by biomaterials has been shown to be a real phenomenon by many investigators in the last decade. The exact mechanism of this phenomenon is, however, still largely unknown. This in vivo study in goats was performed to get insight into processes governing the phenomenon of osteoinduction by biomaterials and had four main goals: (i) to further investigate the influence of physicochemical properties and structure on biomaterial osteoinductive potential, (ii) to investigate the influence of implant size on the amount of induced bone, (iii) to investigate implantation site dependence, and (iv) to investigate changes occurring on the surface of the material after implantation. Intramuscular implantations of four different biphasic calcium phosphate ceramics, consisting of hydroxyapatite and β‐tricalcium phosphate and a carbonated apatite ceramic, indicated that, for a maximal osteoinductive potential, there is an optimal specific surface area for each material type. It was further shown that a decrease of the implant size with a half significantly decreased the relative amount of induced bone. In addition, subcutaneous implantation did not give rise to ectopic bone formation in any of the animals, while bone was induced in most animals intramuscularly. Analysis of the surfaces of the materials after subcutaneous implantation inside diffusion chambers indicated that the increased specific surface area leads to more surface reactivity, which is hypothesized to be essential for osteoinductivity by biomaterials. © 2006 Wiley Periodicals, Inc. J Biomed Master Res, 2006
ISSN:1549-3296
0021-9304
1552-4965
1097-4636
DOI:10.1002/jbm.a.30712