Adaptive predictive functional control of a class of nonlinear systems
This paper describes the use of pseudo-partial derivative (PPD) to dynamically linearize a nonlinear system, and aggregation is applied to the predicted PPD, resulting in a model-free adaptive predictive control algorithm for a nonlinear system. The algorithm design is only based on the PPD derived...
Gespeichert in:
Veröffentlicht in: | ISA transactions 2006-04, Vol.45 (2), p.175-183 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper describes the use of pseudo-partial derivative (PPD) to dynamically linearize a nonlinear system, and aggregation is applied to the predicted PPD, resulting in a model-free adaptive predictive control algorithm for a nonlinear system. The algorithm design is only based on the PPD derived online from the input/output data of the controlled process, however it does provide bounded input/output sequence and setpoint tracking without steady-state error. A detailed discussion on parameter selection is also provided. To show the capability of the algorithm, simulations of a time-delay plant and a pH neutralization process show that the proposed method is effective for system parameter perturbation and external disturbance rejection. |
---|---|
ISSN: | 0019-0578 1879-2022 |
DOI: | 10.1016/S0019-0578(07)60188-8 |