Adaptive predictive functional control of a class of nonlinear systems

This paper describes the use of pseudo-partial derivative (PPD) to dynamically linearize a nonlinear system, and aggregation is applied to the predicted PPD, resulting in a model-free adaptive predictive control algorithm for a nonlinear system. The algorithm design is only based on the PPD derived...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISA transactions 2006-04, Vol.45 (2), p.175-183
Hauptverfasser: Zhang, Bin, Zhang, Weidong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes the use of pseudo-partial derivative (PPD) to dynamically linearize a nonlinear system, and aggregation is applied to the predicted PPD, resulting in a model-free adaptive predictive control algorithm for a nonlinear system. The algorithm design is only based on the PPD derived online from the input/output data of the controlled process, however it does provide bounded input/output sequence and setpoint tracking without steady-state error. A detailed discussion on parameter selection is also provided. To show the capability of the algorithm, simulations of a time-delay plant and a pH neutralization process show that the proposed method is effective for system parameter perturbation and external disturbance rejection.
ISSN:0019-0578
1879-2022
DOI:10.1016/S0019-0578(07)60188-8