Multicolor Light-Emitting Diodes Based on Semiconductor Nanocrystals Encapsulated in GaN Charge Injection Layers

Numerous technologies including solid-state lighting, displays, and traffic signals can benefit from efficient, color-selectable light sources that are driven electrically. Semiconductor nanocrystals are attractive types of chromophores that combine size-controlled emission colors and high emission...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2005-06, Vol.5 (6), p.1039-1044
Hauptverfasser: Mueller, Alexander H, Petruska, Melissa A, Achermann, Marc, Werder, Donald J, Akhadov, Elshan A, Koleske, Daniel D, Hoffbauer, Mark A, Klimov, Victor I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Numerous technologies including solid-state lighting, displays, and traffic signals can benefit from efficient, color-selectable light sources that are driven electrically. Semiconductor nanocrystals are attractive types of chromophores that combine size-controlled emission colors and high emission efficiencies with excellent photostability and chemical flexibility. Applications of nanocrystals in light-emitting technologies, however, have been significantly hindered by difficulties in achieving direct electrical injection of carriers. Here we report the first successful demonstration of electroluminescence from an all-inorganic, nanocrystal-based architecture in which semiconductor nanocrystals are incorporated into a p−n junction formed from GaN injection layers. The critical step in the fabrication of these nanocrystal/GaN hybrid structures is the use of a novel deposition technique, energetic neutral atom beam lithography/epitaxy, that allows for the encapsulation of nanocrystals within a GaN matrix without adversely affecting either the nanocrystal integrity or its luminescence properties. We demonstrate electroluminescence (injection efficiencies of at least 1%) in both single- and two-color regimes using structures comprising either a single monolayer or a bilayer of nanocrystals.
ISSN:1530-6984
1530-6992
DOI:10.1021/nl050384x