Microarray Glass Slides Coated with Block Copolymer Brushes Obtained by Reversible Addition Chain-Transfer Polymerization

The reversible addition−fragmentation chain-transfer polymerization was used to prepare microarray slides grafted with polymer brushes for DNA-based applications. Block copolymer brushes of N,N-dimethylacrylamide (DMA) and glycidyl methacrylate (GMA), poly(DMA-b-GMA) were prepared by extending livin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2006-05, Vol.78 (9), p.3118-3124
Hauptverfasser: Pirri, Giovanna, Chiari, Marcella, Damin, Francesco, Meo, Alessandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The reversible addition−fragmentation chain-transfer polymerization was used to prepare microarray slides grafted with polymer brushes for DNA-based applications. Block copolymer brushes of N,N-dimethylacrylamide (DMA) and glycidyl methacrylate (GMA), poly(DMA-b-GMA) were prepared by extending living poly(dimethylacrylamide) chains. The functional surface was used as a substrate for oligonucleotide hybridization experiments. The results were compared to those provided by glass slides coated by a self-assembled monolayer made of (3-glycidyloxypropyl)trimethoxysilane. Surfaces coated with block polymer brushes bearing oxirane groups are more efficient as substrates for oligonucleotide hybridization than surfaces coated with nonpolymeric self-assembled monolayers containing the same functional group. The high probe grafting density and hybridization efficiency achieved with this polymeric coating reveal the importance of the block architecture to ensure good accessibility of the immobilized probe. The new surface was characterized by static angle measurements and diffuse reflectance FT-IR spectroscopy on a silica model system.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac0521091