Establishment of Perineural Invasion Models and Analysis of Gene Expression Revealed an Invariant Chain (CD74) as a Possible Molecule Involved in Perineural Invasion in Pancreatic Cancer
Purpose: Perineural invasion causes frequent local recurrence even after resection and a poor prognosis for pancreatic cancer. We established perineural invasion models and analyzed the molecular mechanism of perineural invasion in pancreatic cancer. Experimental Design: Seven pancreatic cancer cell...
Gespeichert in:
Veröffentlicht in: | Clinical cancer research 2006-04, Vol.12 (8), p.2419-2426 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose: Perineural invasion causes frequent local recurrence even after resection and a poor prognosis for pancreatic cancer. We
established perineural invasion models and analyzed the molecular mechanism of perineural invasion in pancreatic cancer.
Experimental Design: Seven pancreatic cancer cell lines with or without human peripheral nerves were s.c. implanted in nonobese diabetes/severe
combined immunodeficient mice. We compared expression profiles among high and low perineural invasion cell lines by using
an oligonucleotide microarray. We examined up-regulation of the invariant chain (CD74) in high perineural invasion cell lines
in mRNA and protein levels and surgical cases immunohistochemically.
Results: Four of seven pancreatic cancer cell lines (CaPan1, CaPan2, CFPAC, and MPanc96) showed perineural invasion to s.c. transplanted
human peripheral nerves. Moreover, CaPan1 and CaPan2 (high perineural invasion group) also resulted in a high frequency of
perineural invasion to mouse s.c. peripheral nerves, whereas three pancreatic cancer cell lines HPAFII, AsPC1, and Panc1 (low
perineural invasion group) did not show perineural invasion to either human or mouse nerves. We identified 37 up-regulated
genes and 12 down-regulated genes in the high perineural invasion group compared with the low perineural invasion group. Among
them, CD74 was up-regulated in the high perineural invasion group in mRNA and protein levels. Furthermore, immunohistochemical
expression of CD74 in clinical cases revealed its significant overexpression in pancreatic cancer with perineural invasion
( P < 0.008).
Conclusions: This is the first report of perineural invasion models using human pancreatic cancer cell lines. In combination with gene
expression profiling, it was indicated that CD74 could be a candidate molecule involved in perineural invasion. These models
provide new approaches for study of perineural invasion in pancreatic cancer. |
---|---|
ISSN: | 1078-0432 1557-3265 |
DOI: | 10.1158/1078-0432.CCR-05-1852 |