Modeling fluid diffusion using the lattice density functional theory approach : counterdiffusion in an external field
The dependence of the diffusivity on temperature, pressure, and composition is not understood well; consequently, data is preferred significantly over correlations in most practical situations. Even in dilute gases, the contributions of attractions and repulsions to the diffusivity are difficult to...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2006-01, Vol.8 (14), p.1663-1674 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The dependence of the diffusivity on temperature, pressure, and composition is not understood well; consequently, data is preferred significantly over correlations in most practical situations. Even in dilute gases, the contributions of attractions and repulsions to the diffusivity are difficult to understand on a molecular level without performing simulations. We have developed a Lattice Density Functional Theory (LDFT) approach for modeling diffusion to supplement existing methods that are very rigorous but computationally demanding. The LDFT approach is analogous to the van der Waals equation in how it accounts for molecular interactions in that it has first-order corrections to ideal behavior; it is an extension of the Equilibrium LDFT for adsorption and phase behavior. In this work, the LDFT approach is presented and demonstrated by modeling the problem of color counterdiffusion in an externally-applied potential field. This potential field, in combination with the intermolecular potential function, creates a diffusion regime in which repulsions cause oscillations in the density profile. Using the LDFT approach, the oscillations were described and attributed to nearest-neighbor and next nearest-neighbor interactions. The LDFT approach gives qualitative and quantitative agreement with dual control-volume Grand Canonical Molecular Dynamics simulations. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/b516036g |