Comparison of perturbative and variational treatments of molecular vibrations: application to the vibrational spectrum of HFCO up to 8000 cm(-1)

We calculated highly excited states of the HFCO molecule, comparing results from two methods. In the first method, Van Vleck perturbation theory is used to transform away all off-diagonal couplings except those between nearly degenerate states. This perturbative transformation leads to a matrix repr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2006-04, Vol.110 (16), p.5420-5429
Hauptverfasser: Iung, Christophe, Ribeiro, Fabienne, Sibert, 3rd, Edwin L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We calculated highly excited states of the HFCO molecule, comparing results from two methods. In the first method, Van Vleck perturbation theory is used to transform away all off-diagonal couplings except those between nearly degenerate states. This perturbative transformation leads to a matrix representation where eigenvalues are obtained with relatively small matrices. In the second method, variational eigenvalues are obtained by combining the Jacobi-Wilson approach with the block-Davidson scheme. The key ingredient here is a prediagonalized-perturbative scheme applied to a subspace of a curvilinear normal-mode basis set. Comparisons of the two methods provide a critical test of the less time-consuming perturbation theory. Two different coordinate sets are used to test the sensitivity of the results to coordinate choice. Perturbation theory also requires a polynomial fit to the potential. The implications of this restriction are investigated.
ISSN:1089-5639
DOI:10.1021/jp056937+