Lactobacilli-Expressed Single-Chain Variable Fragment (scFv) Specific for Intercellular Adhesion Molecule 1 (ICAM-1) Blocks Cell-Associated HIV-1 Transmission across a Cervical Epithelial Monolayer
The vaginal and cervical epithelia provide an initial barrier to sexually acquired HIV-1 infection in women. To study the interactions between HIV-1-infected cells or cell-free HIV-1 and the reproductive epithelium, the transmission of HIV-1 by infected cells or cell-free virus across human cervical...
Gespeichert in:
Veröffentlicht in: | Journal of Immunology 2006-05, Vol.176 (9), p.5627-5636 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The vaginal and cervical epithelia provide an initial barrier to sexually acquired HIV-1 infection in women. To study the interactions between HIV-1-infected cells or cell-free HIV-1 and the reproductive epithelium, the transmission of HIV-1 by infected cells or cell-free virus across human cervical epithelial cells was examined using a Transwell culture system. Cell-associated HIV-1 was transmitted more efficiently than cell-free virus, and monocyte-associated virus was transmitted most efficiently. Abs to ICAM-1 added to the apical side of the epithelium blocked cell-mediated transepithelial HIV-1 transmission in vitro. When used in a previously described model of vaginal HIV-1 transmission in human PBL-SCID mice, anti-murine ICAM-1 Abs (0.4 microg/10 microl) also blocked vaginal transmission of cell-associated HIV-1 in vivo. To evaluate a candidate delivery system for the use of this Ab as an anti-HIV-1 microbicide, anti-ICAM single-chain variable fragment Abs secreted by transformed lactobacilli were evaluated for their protective efficacy in the Transwell model. Like the intact Ab and Fab derived from it, the single-chain variable fragment at a concentration of 6.7 microg/100 microl was able to reduce HIV-1 transmission by 70 +/- 5%. These data support the potential efficacy of an anti-ICAM Ab delivered by lactobacilli for use as an anti-HIV-1 microbicide. |
---|---|
ISSN: | 0022-1767 1550-6606 1365-2567 |
DOI: | 10.4049/jimmunol.176.9.5627 |