Nonclassical Pathway of Pseudomonas aeruginosa DNA-Induced Interleukin-8 Secretion in Cystic Fibrosis Airway Epithelial Cells
Pseudomonas aeruginosa is a critical colonizer of the respiratory tract in cystic fibrosis. The chronic infections with this microorganism contribute to excessive inflammation and progressive lung damage in cystic fibrosis patients. The full repertoire of Pseudomonas products that promote inflammati...
Gespeichert in:
Veröffentlicht in: | Infection and Immunity 2006-05, Vol.74 (5), p.2975-2984 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pseudomonas aeruginosa is a critical colonizer of the respiratory tract in cystic fibrosis. The chronic infections with this microorganism contribute to excessive inflammation and progressive lung damage in cystic fibrosis patients. The full repertoire of Pseudomonas products that promote inflammation in the cystic fibrosis lung is not known. Here we show that P. aeruginosa DNA released from the bacterium, but not human DNA from epithelial cells or Escherichia coli DNA, displays proinflammatory properties and induces human respiratory epithelial cells to secrete interleukin-8 (IL-8), a key chemokine causing excessive neutrophil infiltration in the cystic fibrosis lung. IL-8 secretion was not due to an increase in NF-[kappa]B- or activator protein-1-dependent IL-8 promoter transcription, but instead depended on p38 and Erk mitogen-activated protein kinases. No secretion of IL-8 was observed using conventional Toll-like receptor 9 ligands (CpG oligonucleotides), although it could be demonstrated that parts of the Toll-like receptor 9-signaling pathway were functional, since class B and C CpG oligonucleotide ligands stimulated production of RANTES chemokine. The IL-8 secretion in response to P. aeruginosa DNA was decreased by treatments that inhibit acidification of intracellular organelles, using chloroquine, a pH-neutralizing compound, or bafilomycin A1, an inhibitor of vacuolar H⁺-ATPase. These data indicate that DNA released from P. aeruginosa during chronic infections may significantly contribute to the proinflammatory processes in cystic fibrosis. Our findings also show that treatments with drugs diminishing organellar acidification may reduce the inflammatory response in cystic fibrosis. |
---|---|
ISSN: | 1098-5522 0019-9567 1098-5522 |
DOI: | 10.1128/IAI.74.5.2975-2984.2006 |