Longitudinal analysis of censored medical cost data

This paper applies the inverse probability weighted (IPW) least‐squares method to estimate the effects of treatment on total medical cost, subject to censoring, in a panel‐data setting. IPW pooled ordinary‐least squares (POLS) and IPW random effects (RE) models are used. Because total medical cost m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Health economics 2006-05, Vol.15 (5), p.513-525
Hauptverfasser: Başer, Onur, Gardiner, Joseph C., Bradley, Cathy J., Yüce, Hüseyin, Given, Charles
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper applies the inverse probability weighted (IPW) least‐squares method to estimate the effects of treatment on total medical cost, subject to censoring, in a panel‐data setting. IPW pooled ordinary‐least squares (POLS) and IPW random effects (RE) models are used. Because total medical cost might not be independent of survival time under administrative censoring, unweighted POLS and RE cannot be used with censored data, to assess the effects of certain explanatory variables. Even under the violation of this independency, IPW estimation gives consistent asymptotic normal coefficients with easily computable standard errors. A traditional and robust form of the Hausman test can be used to compare weighted and unweighted least squares estimators. The methods are applied to a sample of 201 Medicare beneficiaries diagnosed with lung cancer between 1994 and 1997. Copyright © 2006 John Wiley & Sons, Ltd.
ISSN:1057-9230
1099-1050
DOI:10.1002/hec.1087