Computational intelligence in earth sciences and environmental applications: Issues and challenges

This paper introduces a generic theoretical framework for predictive learning, and relates it to data-driven and learning applications in earth and environmental sciences. The issues of data quality, selection of the error function, incorporation of the predictive learning methods into the existing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2006-03, Vol.19 (2), p.113-121
Hauptverfasser: Cherkassky, V., Krasnopolsky, V., Solomatine, D.P., Valdes, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces a generic theoretical framework for predictive learning, and relates it to data-driven and learning applications in earth and environmental sciences. The issues of data quality, selection of the error function, incorporation of the predictive learning methods into the existing modeling frameworks, expert knowledge, model uncertainty, and other application‐domain specific problems are discussed. A brief overview of the papers in the Special Issue is provided, followed by discussion of open issues and directions for future research.
ISSN:0893-6080
1879-2782
DOI:10.1016/j.neunet.2006.01.001