A simple predictive model for the tensile strength of binary tablets

The tensile strength of tablets of single-component powders, such as microcrystalline cellulose (MCC), hydroxypropylmethyl cellulose (HPMC) and starch, and binary mixtures of these powder were measured at various relative densities. It was found that the tensile strength of tablets of powder blends...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of pharmaceutical sciences 2005-06, Vol.25 (2), p.331-336
Hauptverfasser: Wu, Chuan-Yu, Best, Serena M., Bentham, A. Craig, Hancock, Bruno C., Bonfield, William
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The tensile strength of tablets of single-component powders, such as microcrystalline cellulose (MCC), hydroxypropylmethyl cellulose (HPMC) and starch, and binary mixtures of these powder were measured at various relative densities. It was found that the tensile strength of tablets of powder blends was primarily dependent upon relative density but was independent of the tablet dimensions and compaction kinematics. It was found that the logarithm of tensile strength was proportional to the relative density. A simple model, based upon Ryshkewitch–Duckworth equation that was originally proposed for porous materials, has been developed in order to predict the relationship between the tensile strength and relative density of binary tablets based on the properties of the constituent single-component powders. The validity of the model has been verified with experimental results for various binary mixtures. It has demonstrated that the proposed model can well predict the tensile strength of binary mixtures based upon the properties of single-component powders, such as true density, and the concentrations.
ISSN:0928-0987
1879-0720
DOI:10.1016/j.ejps.2005.03.004