Apparent charge of binding site in ion-translocating enzymes: kinetic impact

Recently, we presented a general scope for the nonlinear electrical properties of enzymes E which catalyze translocation of a substrate S with charge number z(S) through lipid membranes (Boyd et al. J. Membr. Biol. 195:1-12, 2003). In this study, the voltage sensitivity of the enzymatic reaction cyc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European biophysics journal 2005-06, Vol.34 (4), p.353-357
Hauptverfasser: Gradmann, Dietrich, Boyd, Carl M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, we presented a general scope for the nonlinear electrical properties of enzymes E which catalyze translocation of a substrate S with charge number z(S) through lipid membranes (Boyd et al. J. Membr. Biol. 195:1-12, 2003). In this study, the voltage sensitivity of the enzymatic reaction cycle has been assigned to one predominant reversible reaction step, i.e. the reorientation of either E or ES in the electric field, leaving the reorientation of the alternate state (ES or E) electroneutral, respectively. With this simplification, the steady-state current-voltage relationships (IV) assumed saturation kinetics like in Michaelis-Menten systems. Here, we introduce an apparent charge number z(E) of the unoccupied binding site of the enzyme, which accounts for the impact of all charged residues in the vicinity of the physical binding site. With this more realistic concept, the occupied binding site assumes an apparent charge of z(ES) = z(E) + z(S), and IV does not saturate any more in general, but exponentially approaches infinite or zero current for large voltage displacements from equilibrium. These nonlinear characteristics are presented here explicitly. They are qualitatively explained in a mechanistic way, and are illustrated by simple examples. We also demonstrate that the correct determination of the model parameters from experimental data is still possible after incorporating z(E) and its corollaries into the previous model of enzyme-mediated ion translocation.
ISSN:0175-7571
1432-1017
DOI:10.1007/s00249-004-0457-5