Ground states and defect energies of the two-dimensional XY spin glass from a quasiexact algorithm
We employ a novel algorithm using a quasiexact embedded-cluster matching technique as minimization method within a genetic algorithm to reliably obtain numerically exact ground states of the Edwards-Anderson XY spin-glass model with bimodal coupling distribution for square lattices of up to 28 x 28...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2006-03, Vol.96 (9), p.097206-097206 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We employ a novel algorithm using a quasiexact embedded-cluster matching technique as minimization method within a genetic algorithm to reliably obtain numerically exact ground states of the Edwards-Anderson XY spin-glass model with bimodal coupling distribution for square lattices of up to 28 x 28 spins. Contrary to previous conjectures, the ground state of each disorder replica is nondegenerate up to a global O(2) rotation. The scaling of spin and chiral defect energies induced by applying several different sets of boundary conditions exhibits strong crossover effects. This suggests that previous calculations have yielded results far from the asymptotic regime. The novel algorithm and the aspect-ratio scaling technique consistently give theta(s)=-0.308(30) and theta(c)=-0.114(16) for the spin and chiral stiffness exponents, respectively. |
---|---|
ISSN: | 0031-9007 |
DOI: | 10.1103/PhysRevLett.96.097206 |