Experimental evidence of zero forward scattering by magnetic spheres
Magnetically induced diffraction patterns by micron sized magnetic spheres dispersed in a ferrofluid disappear at a certain critical magnetic field. This critical field is found to depend on the concentration of the ferrofluid and on the volume of the magnetic spheres. We attribute this effect to th...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2006-03, Vol.96 (12), p.127402-127402, Article 127402 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Magnetically induced diffraction patterns by micron sized magnetic spheres dispersed in a ferrofluid disappear at a certain critical magnetic field. This critical field is found to depend on the concentration of the ferrofluid and on the volume of the magnetic spheres. We attribute this effect to the zero forward scattering by magnetic spheres as predicted by Kerker, Wang, and Giles [J. Opt. Soc. Am. 73, 765 (1983)]. We suggest that such a dispersion can be used to study the optical analogues of localization of electrons in condensed matter, the Hall effect, and the anisotropic diffusion, etc. The combination of the micron sized magnetic spheres and the ferrofluid will also be useful to design magnetically tunable photonic devices. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.96.127402 |