Entrainment of coupled oscillators on regular networks by pacemakers
We study Kuramoto oscillators, driven by one pacemaker, on d-dimensional regular topologies with nearest neighbor interactions. We derive the analytical expressions for the common frequency in the case of phase-locked motion and for the critical frequency of the pacemaker, placed at an arbitrary pos...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2006-03, Vol.73 (3 Pt 2), p.036218-036218, Article 036218 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study Kuramoto oscillators, driven by one pacemaker, on d-dimensional regular topologies with nearest neighbor interactions. We derive the analytical expressions for the common frequency in the case of phase-locked motion and for the critical frequency of the pacemaker, placed at an arbitrary position in the lattice, so that above the critical frequency no phase-locked motion is possible. We show that the mere change in topology from an open chain to a ring induces synchronization for a certain range of pacemaker frequencies and couplings, while keeping the other parameters fixed. Moreover, we demonstrate numerically that the critical frequency of the pacemaker decreases as a power of the linear size of the lattice with an exponent equal to the dimension of the system. This leads in particular to the conclusion that for infinite-dimensional topologies the critical frequency for having entrainment decreases exponentially with increasing size of the system, or, more generally, with increasing depth of the network, that is, the average distance of the oscillators from the pacemaker. |
---|---|
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/PhysRevE.73.036218 |