Water-Vapor Detection Using Asynchronous THz Sampling
The use of a fiber-coupled terahertz (THz) transmitter/receiver pair for spectroscopic detection of water vapor is investigated. Transmission signals of an alumina cylinder demonstrate that the measurement approach can be applied in a windowless ceramic combustor. First, a conventional commercial tr...
Gespeichert in:
Veröffentlicht in: | Applied spectroscopy 2006-03, Vol.60 (3), p.261-265 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The use of a fiber-coupled terahertz (THz) transmitter/receiver pair for spectroscopic detection of water vapor is investigated. Transmission signals of an alumina cylinder demonstrate that the measurement approach can be applied in a windowless ceramic combustor. First, a conventional commercial transmitter/receiver pair is used to make measurements for frequencies to 1.25 THz. Water-vapor absorption is clearly evident within the alumina transparency window and is readily modeled using existing databases. A variety of data-acquisition schemes is possible using THz instrumentation. To assess signal-collection techniques, a prototype THz transmitter/receiver pair is then used with the asynchronous optical-sampling (ASOPS) technique to obtain asynchronous THz-sampling signals to 1 THz without the need for an optomechanical delay line. Two mode-locked Ti:sapphire lasers operating at slightly different repetition rates are used for pumping the transmitter and receiver independently to permit a complete time-domain THz signal to be recorded. The resulting repetitive phase walkout is demonstrated by collecting power spectra of room air that exhibit water-vapor absorption. |
---|---|
ISSN: | 0003-7028 1943-3530 |
DOI: | 10.1366/000370206776342670 |