Effect of Ozone Oxidation on Single-Walled Carbon Nanotubes
Exposing single-walled carbon nanotubes to room-temperature UV-generated ozone leads to an irreversible increase in their electrical resistance. We demonstrate that the increased resistance is due to ozone oxidation on the sidewalls of the nanotubes rather than at the end caps. Raman and X-ray photo...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2006-04, Vol.110 (14), p.7113-7118 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Exposing single-walled carbon nanotubes to room-temperature UV-generated ozone leads to an irreversible increase in their electrical resistance. We demonstrate that the increased resistance is due to ozone oxidation on the sidewalls of the nanotubes rather than at the end caps. Raman and X-ray photoelectron spectroscopies show an increase in the defect density due to the oxidation of the nanotubes. Using ultraviolet photoelectron spectroscopy, we show that these defects represent the removal of π-conjugated electron states near the Fermi level, leading to the observed increase in electrical resistance. Oxidation of carbon nanotubes is an important first step in many chemical functionalization processes. Because the oxidation rate can be controlled with short exposures, UV-generated ozone offers the potential for use as a low-thermal-budget processing tool. |
---|---|
ISSN: | 1520-6106 1520-5207 |
DOI: | 10.1021/jp0548422 |