Cancer Risk Prediction Models: A Workshop on Development, Evaluation, and Application

Cancer researchers, clinicians, and the public are increasingly interested in statistical models designed to predict the occurrence of cancer. As the number and sophistication of cancer risk prediction models have grown, so too has interest in ensuring that they are appropriately applied, correctly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JNCI : Journal of the National Cancer Institute 2005-05, Vol.97 (10), p.715-723
Hauptverfasser: Freedman, Andrew N., Seminara, Daniela, Gail, Mitchell H., Hartge, Patricia, Colditz, Graham A., Ballard-Barbash, Rachel, Pfeiffer, Ruth M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cancer researchers, clinicians, and the public are increasingly interested in statistical models designed to predict the occurrence of cancer. As the number and sophistication of cancer risk prediction models have grown, so too has interest in ensuring that they are appropriately applied, correctly developed, and rigorously evaluated. On May 20–21, 2004, the National Cancer Institute sponsored a workshop in which experts identified strengths and limitations of cancer and genetic susceptibility prediction models that were currently in use and under development and explored methodologic issues related to their development, evaluation, and validation. Participants also identified research priorities and resources in the areas of 1) revising existing breast cancer risk assessment models and developing new models, 2) encouraging the development of new risk models, 3) obtaining data to develop more accurate risk models, 4) supporting validation mechanisms and resources, 5) strengthening model development efforts and encouraging coordination, and 6) promoting effective cancer risk communication and decision-making.
ISSN:0027-8874
1460-2105
DOI:10.1093/jnci/dji128