The effects of electrically assisted methods on transdermal delivery of nalbuphine benzoate and sebacoyl dinalbuphine ester from solutions and hydrogels
The aim of this study was to assess the effects of iontophoresis and electroporation on transdermal delivery of nalbuphine (NA) and its two novel prodrugs: nalbuphine benzoate (NAB) and sebacoyl dinalbuphine ester (SDN) from solutions as well as from hydrogels. Hydroxypropyl cellulose (HPC) and carb...
Gespeichert in:
Veröffentlicht in: | International journal of pharmaceutics 2005-06, Vol.297 (1), p.162-171 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this study was to assess the effects of iontophoresis and electroporation on transdermal delivery of nalbuphine (NA) and its two novel prodrugs: nalbuphine benzoate (NAB) and sebacoyl dinalbuphine ester (SDN) from solutions as well as from hydrogels. Hydroxypropyl cellulose (HPC) and carboxymethyl cellulose (CMC) were used in hydrogel formulations to evaluate their feasibility for delivery of NA and its prodrugs. Application of iontophoresis or electroporation significantly enhanced the in vitro permeation of NA and its prodrugs. The enhancement effect was more pronounced after applying iontophoresis. The combination of two electrically assisted methods enhanced the delivery of NA; however, no such enhancement was observed for the permeation of NAB and SDN. Hydrogels containing low concentration HPC did not affect the passive as well as electrically assisted permeation of NA and its prodrugs. The increase of hydrogel concentration as well as molecular weight significantly decreased the electrically assisted permeation of NA, whereas the permeation of NAB and SDN remained unchanged. For the electrically assisted permeation from CMC-based hydrogels, the reduced permeation from higher percentage of CMC hydrogels may be attributed the viscosity effect as well as the ion competition effect. The above results demonstrated that lipophilicity and molecular size, as well as hydrogel compositions had significant effects on skin permeation of NA, NAB and SDN via passive diffusion or under the electric field. |
---|---|
ISSN: | 0378-5173 1873-3476 |
DOI: | 10.1016/j.ijpharm.2005.03.015 |