Twist of cholesteric liquid crystal cells: stability of helical structures and anchoring energy effects

We consider helical configurations of a cholesteric liquid crystal (CLC) sandwiched between two substrates with homogeneous director orientation favored at both confining plates. We study the CLC twist wave number q characterizing the helical structures in relation to the free twisting number q(0) w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2005-03, Vol.71 (3 Pt 1), p.031704-031704, Article 031704
Hauptverfasser: Kiselev, A D, Sluckin, T J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider helical configurations of a cholesteric liquid crystal (CLC) sandwiched between two substrates with homogeneous director orientation favored at both confining plates. We study the CLC twist wave number q characterizing the helical structures in relation to the free twisting number q(0) which determines the equilibrium value of CLC pitch P(0) = 2 pi/ q(0) . We investigate the instability mechanism underlying transitions between helical structures with different spiral half-turn numbers. Stability analysis shows that for equal finite anchoring strengths this mechanism can be dominated by in-plane director fluctuations. In this case the metastable helical configurations are separated by the energy barriers and the transitions can be described as the director slippage through these barriers. We extend our analysis to the case of an asymmetric CLC cell in which the anchoring strengths at the two substrates are different. The asymmetry introduces two qualitatively different effects: (a) the intervals of twist wave numbers representing locally stable configurations with adjacent helix half-turn numbers are now separated by instability gaps; and (b) sufficiently large asymmetry, when the difference between azimuthal anchoring extrapolation lengths exceeds the thickness of the cell, will suppress the jumplike behavior of the twist wave number.
ISSN:1539-3755
1550-2376
DOI:10.1103/PhysRevE.71.031704