What process is glycolytic stoichiometry optimal for?
It has been proposed that the glycolytic stoichiometry of 2 ATP per glucose is the result of an optimization that maximizes the rate of ATP production. However, using a nonequilibrium thermodynamic approach, we show here that glycolysis operates under optimal output power and not at optimal flow of...
Gespeichert in:
Veröffentlicht in: | Journal of molecular evolution 2006-04, Vol.62 (4), p.488-495 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It has been proposed that the glycolytic stoichiometry of 2 ATP per glucose is the result of an optimization that maximizes the rate of ATP production. However, using a nonequilibrium thermodynamic approach, we show here that glycolysis operates under optimal output power and not at optimal flow of ATP production. Furthermore, it can be proved that the same maximal output power can be achieved with different stoichiometries. However, changes in the glycolytic stoichiometry would dramatically affect the efficiency of all those cellular processes powered by ATP. Our results suggest that the stoichiometric coefficient, as found in most contemporary cells, may be the outcome of an evolutionary process leading to yield an operative quantum energy for the hydrolysis of ATP. |
---|---|
ISSN: | 0022-2844 1432-1432 |
DOI: | 10.1007/s00239-005-0135-y |