Reproductive and neurological Quaking(viable) phenotypes in a severe combined immune deficient mouse background

The quaking(viable) (qkv) mutation, a spontaneous deletion of a multigenic region encompassing roughly 1 Mb at 5.9 cM on the proximal end of mouse chromosome 17, causes severe trembling in all homozygous animals and infertility in all homozygous males. Physiologically, quaking mice exhibit dysmyelin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Immunogenetics (New York) 2005-05, Vol.57 (3-4), p.226-231
Hauptverfasser: Tucker, Tammy A, Kundert, Jean A, Bondareva, Alla A, Schmidt, Edward E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The quaking(viable) (qkv) mutation, a spontaneous deletion of a multigenic region encompassing roughly 1 Mb at 5.9 cM on the proximal end of mouse chromosome 17, causes severe trembling in all homozygous animals and infertility in all homozygous males. Physiologically, quaking mice exhibit dysmyelination and postmeiotic spermatogenic arrest. Molecular defects in Qkv mice occur in the affected tissues, indicating the primary causes of these pathologies are cell autonomous. However, because both the reproductive and neurological defects are in immune-privileged sites and because some similar pathologies at both sites have been shown to be immune mediated, we tested whether the immune system participates secondarily in manifestation of Qkv phenotypes. The qkv mutation was bred into a severe combined immune-deficient mouse line (SCID; devoid of mature B and T cells) and penetrance of the neurological and the male sterile phenotypes was measured. Results showed that neither defect was ameliorated in the immune-deficient background. We conclude that the Qkv pathologies do not likely involve a B- or T-cell-dependent response against these immune-privileged sites.
ISSN:0093-7711
DOI:10.1007/s00251-005-0792-4