Electronic spectra of heteroatom-containing isoelectronic carbon chains C(2n)S and C2(n)Cl+ (n=1-5)
Structures and stabilities of carbon chains C(2n)S and C2(n)Cl+ (n=1-5) in their ground states have been investigated by the density functional theory and the coupled cluster approach using single and double substitutions. The complete active space self-consistent-field method has been used for geom...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2006-03, Vol.124 (12), p.124319-124319 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Structures and stabilities of carbon chains C(2n)S and C2(n)Cl+ (n=1-5) in their ground states have been investigated by the density functional theory and the coupled cluster approach using single and double substitutions. The complete active space self-consistent-field method has been used for geometry optimization of selected excited states in both series. Calculations show that both C(2n)S (n=1-5) and C2(n)Cl+ (n=3-5) have linear structures in the triplet ground state 3Sigma-, while C2Cl+ and C4Cl+ have nonlinear structures in the ground state 3A". The vertical transition energies and emission energies by the multiconfigurational second-order perturbation theory in linear clusters C(2n)S and C2(n)Cl+ exhibit similar size dependences. In comparison with the available experimental observations, the predicted excitation energies for the allowed 2 3Sigma- |
---|---|
ISSN: | 0021-9606 |