Electronic spectra of heteroatom-containing isoelectronic carbon chains C(2n)S and C2(n)Cl+ (n=1-5)

Structures and stabilities of carbon chains C(2n)S and C2(n)Cl+ (n=1-5) in their ground states have been investigated by the density functional theory and the coupled cluster approach using single and double substitutions. The complete active space self-consistent-field method has been used for geom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2006-03, Vol.124 (12), p.124319-124319
Hauptverfasser: Zhang, Jinglai, Wu, Wenpeng, Wang, Lianbin, Cao, Zexing
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Structures and stabilities of carbon chains C(2n)S and C2(n)Cl+ (n=1-5) in their ground states have been investigated by the density functional theory and the coupled cluster approach using single and double substitutions. The complete active space self-consistent-field method has been used for geometry optimization of selected excited states in both series. Calculations show that both C(2n)S (n=1-5) and C2(n)Cl+ (n=3-5) have linear structures in the triplet ground state 3Sigma-, while C2Cl+ and C4Cl+ have nonlinear structures in the ground state 3A". The vertical transition energies and emission energies by the multiconfigurational second-order perturbation theory in linear clusters C(2n)S and C2(n)Cl+ exhibit similar size dependences. In comparison with the available experimental observations, the predicted excitation energies for the allowed 2 3Sigma-
ISSN:0021-9606