Estradiol protects against oxygen and glucose deprivation in rat hippocampal organotypic cultures and activates Akt and inactivates GSK-3beta

Here we investigated the neuroprotective effect of 17beta-estradiol in an in vitro model of ischemia. We used organotypic hippocampal slice cultures, acute or chronically treated with 17beta-estradiol (10 nM), and exposed to oxygen and glucose deprivation (OGD). Cellular death was quantified by meas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurochemical research 2005-02, Vol.30 (2), p.191-199
Hauptverfasser: Cimarosti, Helena, Zamin, Lauren L, Frozza, Rudimar, Nassif, Melissa, Horn, Ana Paula, Tavares, Alexandre, Netto, Carlos Alexandre, Salbego, Christianne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Here we investigated the neuroprotective effect of 17beta-estradiol in an in vitro model of ischemia. We used organotypic hippocampal slice cultures, acute or chronically treated with 17beta-estradiol (10 nM), and exposed to oxygen and glucose deprivation (OGD). Cellular death was quantified by measuring uptake of propidium iodide (PI), a marker of dead cells. In OGD exposed cultures, treated only with vehicle, about 70% of the CA1 area of hippocampus was labeled with PI, indicating a great percentage of cellular death. When cultures were treated with 17beta-estradiol (acute or chronically), this cellular death was reduced to 15%. This effect was prevented by LY294002 but was not by PD98059. Immunoblotting revealed that both, chronic and acute, treatments with 17beta-estradiol induced the phosphorylation/activation of Akt and the phosphorylation/inactivation of GSK-3beta. Our results show a clear neuroprotective effect of 17beta-estradiol and suggest that this effect could involve PI3-K pathway.
ISSN:0364-3190