Rescue and regeneration of injured peripheral nerve axons by intrathecal insulin

Insulin peptide, acting through tyrosine kinase receptor pathways, contributes to nerve development or repair. In this work, we examined the direction, impact and repertoire of insulin signaling in vivo during peripheral nerve regeneration in rats. First, we demonstrated that insulin receptor is exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience 2006-01, Vol.139 (2), p.429-449
Hauptverfasser: Toth, C., Brussee, V., Martinez, J.A., McDonald, D., Cunningham, F.A., Zochodne, D.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Insulin peptide, acting through tyrosine kinase receptor pathways, contributes to nerve development or repair. In this work, we examined the direction, impact and repertoire of insulin signaling in vivo during peripheral nerve regeneration in rats. First, we demonstrated that insulin receptor is expressed on lumbar dorsal root ganglia neuronal perikarya using immunohistochemistry. Immunoblots and polymerase chain reactions confirmed the presence of both α and β insulin receptor subunits in dorsal root ganglia. In vivo and in vitro assessment of dorsal root ganglion neurons showed preferential localization of insulin receptor to perikaryal sites. In vivo, intrathecal delivery of fluorescein isothiocyanate-labeled insulin identified localization around dorsal root ganglia neurons. The direction and impact of potential insulin signaling was evaluated by concurrently delivering insulin or carrier over a 2 week period using mini-osmotic pumps, either intrathecally, near nerve, or with both deliveries, following a selective sural nerve crush injury. Only intrathecal insulin increased the number and maturity of regenerating sensory sural nerve axons distal to the crush site. As well, only intrathecal insulin rescued retrograde loss of sural axons after crush. In a separate experiment, insulin also rescued retrograde loss and atrophy of deep peroneal, largely motor, axons post-injury. Intrathecal insulin increased the expression of calcitonin-gene-related peptide in regenerating sprouts, increased the number of visualized regenerating fiber clusters, and reduced downregulation of calcitonin-gene-related peptide in dorsal root ganglia neurons. Insulin delivered intrathecally does not appear to influence expression of insulin-like growth factor-1 at dorsal root ganglion neurons or near peripheral nerve injury, but was associated with upregulation of insulin receptor α subunit in dorsal root ganglia. Intrathecal insulin delivery was associated with greater recovery of thermal sensation and longer distances to stimulus response with the pinch test following sural nerve crush. Insulin signaling at neuron perikarya can drive distal sensory axon regrowth, rescue retrograde alterations of axons and alter axon peptide expression. Moreover, such actions are associated with upregulation of its own receptor.
ISSN:0306-4522
1873-7544
DOI:10.1016/j.neuroscience.2005.11.065