Binding of acellular, native and cross-linked human hemoglobins to haptoglobin: enhanced distribution and clearance in the rat
It is well established that hemoglobin resulting from red cell lysis binds to haptoglobin in plasma to form a complex. The increased molecular size precludes its filtration by the kidneys, redirecting it toward hepatocellular entry. Chemically cross-linked hemoglobins are designed to be resistant to...
Gespeichert in:
Veröffentlicht in: | American journal of physiology: Gastrointestinal and liver physiology 2005-06, Vol.288 (6), p.G1301-G1309 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is well established that hemoglobin resulting from red cell lysis binds to haptoglobin in plasma to form a complex. The increased molecular size precludes its filtration by the kidneys, redirecting it toward hepatocellular entry. Chemically cross-linked hemoglobins are designed to be resistant to renal excretion, even in the absence of haptoglobin. The manner in which binding to haptoglobin influences the pharmacokinetics of acellular cross-linked and native hemoglobins was investigated after intravenous injection of radiolabeled native human hemoglobin and trimesyl-(Lys82)beta-(Lys82)beta cross-linked human hemoglobin, at trace doses, into rats. Under these conditions, there is sufficient plasma haptoglobin for binding with hemoglobin. In vitro binding assayed by size-exclusion chromatography for bound and free hemoglobin revealed that, at |
---|---|
ISSN: | 0193-1857 1522-1547 |
DOI: | 10.1152/ajpgi.00399.2004 |