Technique for measurement of fluorescence lifetime by use of stroboscopic excitation and continuous-wave detection

A study of the practicality a simple technique for obtaining time-domain information that uses continuous wave detection of fluorescence is presented. We show that this technique has potential for use in assays for which a change in the lifetime of an indicator occurs in reaction to an analyte, in f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Optics 2006-03, Vol.45 (9), p.2115-2123
Hauptverfasser: Matthews, D R, Summers, H D, Njoh, K, Errington, R J, Smith, P J, Barber, P, Ameer-Beg, S, Vojnovic, B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A study of the practicality a simple technique for obtaining time-domain information that uses continuous wave detection of fluorescence is presented. We show that this technique has potential for use in assays for which a change in the lifetime of an indicator occurs in reaction to an analyte, in fluorescence resonance energy transfer, for example, and could be particularly important when one is carrying out such measurements in the scaled-down environment of a lab on a chip (biochip). A rate-equation model is presented that allows an objective analysis to be made of the relative importance of the key measurement parameters: optical saturation of the fluorophore and period of the excitation pulse. An experimental demonstration of the technique that uses a cuvette-based analysis of a carbocyanine dye and for which the excitation source is a 650 nm wavelength, self-pulsing AlGaInP laser diode is compared with the model.
ISSN:1559-128X
0003-6935
1539-4522
DOI:10.1364/AO.45.002115