Measuring Diffusion of Molecules into Individual Polymer Particles by Confocal Raman Microscopy

Raman microscopy is a powerful method for providing spatially resolved, chemically selective information about the composition of materials. With confocal collection optics, the method is well suited to the analysis of small particles in contact with liquid solutions. In this work, the transport of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2006-04, Vol.78 (7), p.2121-2129
Hauptverfasser: Bridges, Travis E, Uibel, Rory H, Harris, Joel M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Raman microscopy is a powerful method for providing spatially resolved, chemically selective information about the composition of materials. With confocal collection optics, the method is well suited to the analysis of small particles in contact with liquid solutions. In this work, the transport of an organic solvent component into small polystyrene particles is investigated. An inverted confocal Raman microscope is used to acquire spectra from individual 75-μm polystyrene particles in contact with acetonitrile/water mixtures. Monitoring the Raman scattering from the C⋮N stretching mode of acetonitrile provides a measure of solvent uptake into the polymer material. The small collection volume defined by the confocal optics provides the micrometer spatial resolution needed to track solvent concentration at different locations within the particle with 30-s time resolution. The volume fraction of acetonitrile in water in the surrounding solution was varied in order to determine the concentration dependence of the diffusion kinetics. Modeling the transport of molecules into a particle was addressed by using finite element methods for the evaluation of the coupled space- and time-dependent differential equations that govern the molecular transport. The results indicate that the diffusion coefficient changes with the local solvent concentration in the polymer. At longer times, with the highest acetonitrile concentrations, an evolution of the solvent transport mechanism was observed, from a diffusive rate that depends on local concentration to a linear increase in concentration with time accompanied by measurable swelling of the particle volume.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac052056n